Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles

. 2011 Dec ; 6 (1) : 10. [epub] 20100824

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27502634
Odkazy

PubMed 27502634
PubMed Central PMC3211143
DOI 10.1007/s11671-010-9753-4
PII: 10.1007/s11671-010-9753-4
Knihovny.cz E-zdroje

Aggregation of zero-valent nanoparticles in groundwater is influenced by several physical phenomena. The article shortly introduces preceding works in modeling of aggregation of small particles including influence of sedimentation, velocity profile of water, heat fluctuations, and surface electric charge. A brief description of inclusion of magnetic forces into the model of aggregation follows. Rate of influence of the magnetic forces on the aggregation depends on the magnitude of magnetization of the particles, radius of nanoparticles, size of the aggregates, and their concentration in the solution. Presented results show that the magnetic forces have significant influence on aggregation especially of the smallest iron particles.

Zobrazit více v PubMed

Zhang W-X. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323–332. doi: 10.1023/A:1025520116015. DOI

Li L, Fan M, Brown CR, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P. Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Env Sci Technol. 2006;36:405–431. doi: 10.1080/10643380600620387. DOI

Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry and kinetics. Environ Sci Technol. 2005;39(5):1221–1230. doi: 10.1021/es049190u. PubMed DOI

Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M. Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol. 2007;41:4367–4374. doi: 10.1021/es062312t. PubMed DOI

Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV. Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environ Sci Technol. 2008;42(9):3349–3355. doi: 10.1021/es071936b. PubMed DOI

Johnson RL, Johnson GO, Nurmi JT, Tratnyek PG. Natural organic matter enhanced mobility of nano zerovalent. Environ Sci Technol. 2009;43(14):5455–60. doi: 10.1021/es900474f. PubMed DOI

Kanel SR, Greneche J-M, Choi H. Arsenic (V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol. 2006;40(6):2045–2050. doi: 10.1021/es0520924. PubMed DOI

Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324:71–79. doi: 10.1016/j.jcis.2008.04.064. PubMed DOI

Kanel SR, Manning B, Charlet L, Choi H. Removal of Arsenic(III) from groundwater by nano scale zero-alent iron. Environ Sci Technol. 2005;39(5):1291–1298. doi: 10.1021/es048991u. PubMed DOI

Song H, Carraway ER. Reduction of chlorinated methanes by nano-sized zero-valent iron. Kinetics, pathways, and effect of reaction conditions. Environ Eng Sci. 2006;23(2) doi: 10.1089/ees.2006.23.272. PubMed DOI

Buffle J, Van Leeuweh H, eds. Environmental Particles, Lewis publishers. 1993. pp. 353–360.

Somasundaran P, Runkana V. Modeling flocculation of colloidal mineral suspensions using population balances. Int J Miner Process. 2003;72:33–55. doi: 10.1016/S0301-7516(03)00086-3. DOI

Garrick S, Zachariah M, Lehtinen K. Proceeding of the National Conference of the Combustion Institute. Oakland; 2001. Modeling and simulation of nanoparticle coagulation in a high reynolds number incompressible flows; pp. 25–27.

Thomas B, Camp R. Velocity gradients and internal work in fluid motion. J Boston Soc Civil Eng. 1943;30:4.

Smoluchowski MV. Test of a mathematical theory of coagulation kinetics of colloid solutions [in German] Zeitschrift f physik Chemie. 1916;XCII:129–168.

Rosická D, Šembera J. Mathematical model of aggregation of nanoscale particles with surface charge. 2009. submitted.

Reardon EJ, Fagan R, Vogan JL, Przepiora A. Anaerobic corrosion reaction kinetics of nanosized iron. Environ Sci Technol. 2008;42(7) doi: 10.1021/es0712120. PubMed DOI

Horák D, Petrovský E, Kapicka A, Frederichs T. Synthesis and characterization of magnetic Poly(Glycidyl Methacrylate) microspheres. J Magnet Magn Mater. 2007. pp. 500–506.

Masheva V, Grigorova M, Nihtianova D, Schmidt JE, Mikhov M. Magnetization processes of small γ-Fe2O3 particles in non-magnetic matrix. Phys D Appl Phys. 1999;32:1595–1599. doi: 10.1088/0022-3727/32/14/308. DOI

Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41(1):284–290. doi: 10.1021/es061349a. PubMed DOI

Zhang LY, Wang J, Wei LM, Liu P, Wei H, Zhang YF. Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields. Nano-Micro Lett. 2009;1:49–52. doi: 10.5101/nml.v1i1.p49-52. DOI

Sun Y-P, Cao J, Zhang W-X, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci. 2006;120:47–56. doi: 10.1016/j.cis.2006.03.001. PubMed DOI

Pelikánová D. Nanoparticle Aggregation Model [in Czech], Diploma thesis, Technical University of Liberec. 2008.

Stumm W, Morgan JJ. Aquatic Chemistry. A Wiley-Interscience Publication, New York; 1996.

Votrubík V. Theory of the electromagnetic field [in Czech] Czechoslovak Academy of Science Publication, Praha; 1958.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...