Assessment of Influence of Magnetic Forces on Aggregation of Zero-valent Iron Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
27502634
PubMed Central
PMC3211143
DOI
10.1007/s11671-010-9753-4
PII: 10.1007/s11671-010-9753-4
Knihovny.cz E-zdroje
- Klíčová slova
- Aggregation, Iron nanoparticles, Magnetic forces, Mass transport coefficient,
- Publikační typ
- časopisecké články MeSH
Aggregation of zero-valent nanoparticles in groundwater is influenced by several physical phenomena. The article shortly introduces preceding works in modeling of aggregation of small particles including influence of sedimentation, velocity profile of water, heat fluctuations, and surface electric charge. A brief description of inclusion of magnetic forces into the model of aggregation follows. Rate of influence of the magnetic forces on the aggregation depends on the magnitude of magnetization of the particles, radius of nanoparticles, size of the aggregates, and their concentration in the solution. Presented results show that the magnetic forces have significant influence on aggregation especially of the smallest iron particles.
Zobrazit více v PubMed
Zhang W-X. Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res. 2003;5:323–332. doi: 10.1023/A:1025520116015. DOI
Li L, Fan M, Brown CR, Van Leeuwen JH, Wang J, Wang W, Song Y, Zhang P. Synthesis, properties, and environmental applications of nanoscale iron-based materials: a review. Crit Rev Env Sci Technol. 2006;36:405–431. doi: 10.1080/10643380600620387. DOI
Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD. Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry and kinetics. Environ Sci Technol. 2005;39(5):1221–1230. doi: 10.1021/es049190u. PubMed DOI
Filip J, Zboril R, Schneeweiss O, Zeman J, Cernik M, Kvapil P, Otyepka M. Environmental applications of chemically pure natural ferrihydrite. Environ Sci Technol. 2007;41:4367–4374. doi: 10.1021/es062312t. PubMed DOI
Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV. Ionic strength and composition affect the mobility of surface-modified FeO nanoparticles in water-saturated sand columns. Environ Sci Technol. 2008;42(9):3349–3355. doi: 10.1021/es071936b. PubMed DOI
Johnson RL, Johnson GO, Nurmi JT, Tratnyek PG. Natural organic matter enhanced mobility of nano zerovalent. Environ Sci Technol. 2009;43(14):5455–60. doi: 10.1021/es900474f. PubMed DOI
Kanel SR, Greneche J-M, Choi H. Arsenic (V) removal from groundwater using nanoscale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol. 2006;40(6):2045–2050. doi: 10.1021/es0520924. PubMed DOI
Tiraferri A, Chen KL, Sethi R, Elimelech M. Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum. J Colloid Interface Sci. 2008;324:71–79. doi: 10.1016/j.jcis.2008.04.064. PubMed DOI
Kanel SR, Manning B, Charlet L, Choi H. Removal of Arsenic(III) from groundwater by nano scale zero-alent iron. Environ Sci Technol. 2005;39(5):1291–1298. doi: 10.1021/es048991u. PubMed DOI
Song H, Carraway ER. Reduction of chlorinated methanes by nano-sized zero-valent iron. Kinetics, pathways, and effect of reaction conditions. Environ Eng Sci. 2006;23(2) doi: 10.1089/ees.2006.23.272. PubMed DOI
Buffle J, Van Leeuweh H, eds. Environmental Particles, Lewis publishers. 1993. pp. 353–360.
Somasundaran P, Runkana V. Modeling flocculation of colloidal mineral suspensions using population balances. Int J Miner Process. 2003;72:33–55. doi: 10.1016/S0301-7516(03)00086-3. DOI
Garrick S, Zachariah M, Lehtinen K. Proceeding of the National Conference of the Combustion Institute. Oakland; 2001. Modeling and simulation of nanoparticle coagulation in a high reynolds number incompressible flows; pp. 25–27.
Thomas B, Camp R. Velocity gradients and internal work in fluid motion. J Boston Soc Civil Eng. 1943;30:4.
Smoluchowski MV. Test of a mathematical theory of coagulation kinetics of colloid solutions [in German] Zeitschrift f physik Chemie. 1916;XCII:129–168.
Rosická D, Šembera J. Mathematical model of aggregation of nanoscale particles with surface charge. 2009. submitted.
Reardon EJ, Fagan R, Vogan JL, Przepiora A. Anaerobic corrosion reaction kinetics of nanosized iron. Environ Sci Technol. 2008;42(7) doi: 10.1021/es0712120. PubMed DOI
Horák D, Petrovský E, Kapicka A, Frederichs T. Synthesis and characterization of magnetic Poly(Glycidyl Methacrylate) microspheres. J Magnet Magn Mater. 2007. pp. 500–506.
Masheva V, Grigorova M, Nihtianova D, Schmidt JE, Mikhov M. Magnetization processes of small γ-Fe2O3 particles in non-magnetic matrix. Phys D Appl Phys. 1999;32:1595–1599. doi: 10.1088/0022-3727/32/14/308. DOI
Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol. 2007;41(1):284–290. doi: 10.1021/es061349a. PubMed DOI
Zhang LY, Wang J, Wei LM, Liu P, Wei H, Zhang YF. Synthesis of Ni nanowires via a hydrazine reduction route in aqueous ethanol solutions assisted by external magnetic fields. Nano-Micro Lett. 2009;1:49–52. doi: 10.5101/nml.v1i1.p49-52. DOI
Sun Y-P, Cao J, Zhang W-X, Wang HP. Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci. 2006;120:47–56. doi: 10.1016/j.cis.2006.03.001. PubMed DOI
Pelikánová D. Nanoparticle Aggregation Model [in Czech], Diploma thesis, Technical University of Liberec. 2008.
Stumm W, Morgan JJ. Aquatic Chemistry. A Wiley-Interscience Publication, New York; 1996.
Votrubík V. Theory of the electromagnetic field [in Czech] Czechoslovak Academy of Science Publication, Praha; 1958.
Influence of structure of iron nanoparticles in aggregates on their magnetic properties