Iron nanoparticles
Dotaz
Zobrazit nápovědu
Zero-valent iron nanoparticles (nZVI) are used in remediation technologies. However, their high reactivity is responsible for the nZVI toxicity against autochthonal microorganisms whose participation on a remediation process is important. The aim of this study was to investigate the application of humic substances as a potential protective agent. The activity of nZVI and protective effect of humic substances were studied on gram-positive soil bacteria Rhodococcus erythropolis (CCM 2595). The effectiveness of the humic substances under study was evaluated by the measurement of the cell viability and by tests characterizing the oxidative stress, lipid peroxidation and protein carbonylation.
- MeSH
- huminové látky * využití MeSH
- kovové nanočástice * toxicita MeSH
- mikrobiologie životního prostředí MeSH
- mikroskopie elektronová rastrovací metody přístrojové vybavení využití MeSH
- oxidační stres MeSH
- Rhodococcus izolace a purifikace MeSH
- spektrofotometrie MeSH
- železo MeSH
- znečištění životního prostředí MeSH
One of the major obstacles that limits the use of magnetic nanoparticles in biomedical applications is their potential toxicity. In the present study, we evaluated the cytotoxic effects of thiol-functionalized silica-coated iron oxide (Fe3O4@SiO2-SH) nanoparticles using human lung epithelial cells A549. We investigated the effect of Fe3O4@SiO2-SH nanoparticles on the cell viability, proliferation, cell cycle distribution, adhesion, apoptosis, and the orientation of the cytoskeletal networks, as well as on expression of proteins involved in cell death, cell survival, and cell adhesion. We demonstrated that exposure of A549 cells to Fe3O4@SiO2-SH nanoparticles resulted in severe disruption of the actin microfilaments and microtubule cytoskeleton and reduced the size of focal adhesions. Furthermore, cell adhesion was significantly affected as well as the phosphorylation of focal adhesion kinase (FAK), extracellular-signal-regulated kinase (ERK), and p38. Our findings highlight the need for in-depth cytotoxic evaluation of nanoparticles supporting their safer use, especially in biomedical applications.
- MeSH
- buněčná adheze účinky léků MeSH
- buňky A549 MeSH
- cytoskelet účinky léků MeSH
- lidé MeSH
- magnetické nanočástice oxidů železa chemie toxicita MeSH
- oxid křemičitý chemie MeSH
- proliferace buněk účinky léků MeSH
- sulfhydrylové sloučeniny chemie MeSH
- železo chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Iron oxide nanoparticles (IONPs) were the first generation of nanomaterials that reached real clinic use. Particularly, several IONPs-based magnetic resonance imaging contrast agents gained approval by US Food and Drug Administration (FDA). However, latter body of evidence revealed the overlooked side effects of IONPs, resulting in their withdrawal. Emerging evidence suggests that this happened due to poor understanding of the mechanisms by which IONPs act at the cellular and sub-cellular levels. Recent studies indicate that better understanding of fundamental signal modulations induced by nanomaterials is essential to overcome the clinical problems with nanoparticles. Therefore, in this article we critically review potential mechanisms of IONPs-cell interactions and challenges related with their identification. We describe mechanisms of IONPs-induced toxicity. Ultimately, we demonstrate that knowledge of cellular mechanisms of IONPs action helped to overcome certain translation problems in nanomedicine - we explore potential causes and challenges associated with poor clinical performance of IONPs and propose outlook of how to overcome problems in the field. Our critical analysis implies that a clear understanding of molecular mechanisms of IONPs-cell interactions will provide a basement to increase the likelihood for clinical success of IONPs.
Although cancer is one of the most dangerous and the second most lethal disease in the world, current therapy including surgery, chemotherapy, radiotherapy, etc., is highly insufficient not in the view of therapy success rate or the amount of side effects. Accordingly, procedures with better outcomes are highly desirable. Iron oxide nanoparticles (IONPs) present an innovative tool-ideal for innovation and implementation into practice. This review is focused on summarizing some well-known facts about pharmacokinetics, toxicity, and the types of IONPs, and furthermore, provides a survey of their use in cancer diagnosis and therapy.
- MeSH
- lidé MeSH
- magnetické nanočástice * chemie terapeutické užití MeSH
- nádory * diagnóza terapie MeSH
- železité sloučeniny * chemie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
In recent years, Fe oxide nanoparticles have been increasingly used in a wide range of biomedical applications, including magnetic resonance imaging, magnetic hyperthermia, targeted drug and gene delivery, cell tracking and magnetic cell separation. Although the number of studies examining the toxicity of Fe oxide nanoparticles is growing exponentially, the in-depth toxicity studies are scanty and the mechanisms underlying their cytotoxicity remain still mostly unclear. This review focuses on the assessment of the in vitro and in vivo toxicity of Fe oxide nanoparticles and discusses the biological processes underlying their toxicity including cellular uptake, production of reactive O species, modulation of actin and microtubular cytoskeleton, DNA damage and activation of intracellular signalling pathways. The significance of the proteins associated with Fe oxide nanoparticles and assays for assessing their cytotoxicity are also considered. We have tested cytotoxic effects of silica-coated Fe oxide nanoparticles on human lung adenocarcinoma, epithelial cell line A549 using the xCELLigence system for label-free and real-time monitoring of cell viability.
- Klíčová slova
- MNPs, SPIONs,
- MeSH
- kovové nanočástice chemie škodlivé účinky terapeutické užití toxicita MeSH
- lidé MeSH
- magnetické nanočástice * chemie škodlivé účinky terapeutické užití toxicita MeSH
- oxidační stres MeSH
- techniky in vitro MeSH
- testy toxicity * MeSH
- viabilita buněk MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Arsenates, when present in water resources, constitute a risk to human health. In order to remove them, various technologies have been developed; out of them, sorption approach is widely adopted employing a wide spectrum of suitable sorbent materials. Nanoparticles of iron oxide are frequently used due to a high surface area and ability to control them by external magnetic field. In this work, we report on a simple and cheap synthesis of ultrafine iron(III) oxide nanoparticles with a narrow size distribution and their exploitation in the field of arsenate removal from aqueous environment. It is shown that the adsorption capacity is enhanced by a mesoporous nature of nanoparticle arrangement in their system due to strong magnetic interactions they evolve between nanoparticles. A complete arsenate removal is achieved at Fe/As ratio equal to ∼20/1 and at pH in the range from 5 to 7.6. Under these conditions, the arsenates are completely removed within several minutes of treatment. Among iron-oxide-based nanosystems synthesized and employed in arsenate remediation issues so far, our assembly of iron(III) oxide nanoparticles shows the highest Freundlich adsorption coefficient and equilibrium sorption capacity under conditions maintained. Taking into account simple and low-cost preparation procedure, product high yields, almost monodispersed character, room-temperature superparamagnetic behavior, and strong magnetic response under small applied magnetic fields, the synthesized iron(III) oxide nanoparticles can be regarded as a promising candidate for exploitation in the field of removing undesired toxic pollutants from various real water systems.
The present work introduces combination of superparamagnetic iron oxides (SPIONs) and hexamolybdenum cluster ([{Mo6I8}I6]2-) units within amino-decorated silica nanoparticles (SNs) as promising design of the hybrid SNs as efficient cellular contrast and therapeutic agents. The heating generated by SNs doped with SPIONs (Fe3O4@SNs) under alternating magnetic field is characterized by high specific absorption rate (SAR = 446 W/g). The cluster units deposition onto both Fe3O4@SNs and "empty" silica nanoparticles (SNs) results in Fe3O4@SNs[{Mo6I8}I6] and SNs[{Mo6I8}I6] with red cluster-centered luminescence and ability to generate reactive oxygen species (ROS) under the irradiation. The monitoring of spin-trapped ROS by ESR spectroscopy technique indicates that the ROS-generation decreases in time for SNs[{Mo6I8}I6] and [{Mo6I8}I6]2- in aqueous solutions, while it remains constant for Fe3O4@SNs[{Mo6I8}I6]. The cytotoxicity is low for both Fe3O4@SNs[{Mo6I8}I6] and SNs[{Mo6I8}I6], while the flow cytometry indicates preferable cellular uptake of the former versus the latter type of the nanoparticles. Moreover, entering into nucleus along with cytoplasm differentiates the intracellular distribution of Fe3O4@SNs[{Mo6I8}I6] from that of SNs[{Mo6I8}I6], which remain in the cell cytoplasm only. The exceptional behavior of Fe3O4@SNs[{Mo6I8}I6] is explained by residual amounts of iron ions at the silica surface.
BACKGROUND: Mineral iron(III) recognition by bacteria is considered a matter of debate. The peculiar surface chemistry of novel naked magnetic nanoparticles, called SAMNs (surface active maghemite nanoparticles) characterized by solvent exposed Fe(3+) sites on their surface, was exploited for studying mineral iron sensing in Pseudomonas fluorescens. METHODS: SAMNs were applied for mimicking Fe(3+) ions in solution, acting as magnetically drivable probes to evaluate putative Fe(3+) recognition sites on the microorganism surface. Culture broths and nano-bio-conjugates were characterized by UV-Vis spectroscopy and mass spectrometry. RESULTS: The whole heritage of a membrane porin (OprF) of P. fluorescens Ps_22 cells was recognized and firmly bound by SAMNs. The binding of nanoparticles to OprF porin was correlated to a drastic inhibition of a siderophore (pyoverdine) biosynthesis and to the stimulation of the production and rate of formation of a secondary siderophore. The analysis of metabolic pathways, based on P. fluorescens Ps_22 genomic information, evidenced that this putative secondary siderophore does not belong to a selection of the most common siderophores. CONCLUSIONS: In the scenario of an adhesion mechanism, it is plausible to consider OprF as the biological component deputed to the mineral iron sensing in P. fluorescens Ps_22, as well as one key of siderophore regulation. GENERAL SIGNIFICANCE: The present work sheds light on mineral iron sensing in microorganisms. Peculiar colloidal naked iron oxide nanoparticles offer a useful approach for probing the adhesion of bacterial surface on mineral iron for the identification of the specific recognition site for this iron uptake regulation in microorganisms.
- MeSH
- bakteriální adheze genetika MeSH
- magnetické nanočástice chemie MeSH
- minerály chemie metabolismus MeSH
- poriny chemie genetika metabolismus MeSH
- povrchově aktivní látky chemie MeSH
- proteiny vnější bakteriální membrány chemie genetika metabolismus MeSH
- Pseudomonas fluorescens chemie metabolismus MeSH
- železité sloučeniny chemie MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The extensive use of nanoscale zero-valent iron (nZVI) particles for groundwater treatment has been limited, in part, because of their non-selective reactivity and low mobility in aquatic environments. Herein, we describe and explore progressive changes in the reactivity and migration of aqueous dispersed nZVI particles under an applied DC electric field. Due to the applied electric field with an intensity of about 1 V cm-1, the solution oxidation-reduction potential (ORP) remained as low as -200 mV for at least 32 days, which was in agreement with the persistence of the reduced iron species (mainly Fe(II)), and led to substantially prolonged reactivity of the original nZVI. The treatment of chlorinated ethenes (DCE > PCE > TCE) was markedly faster, individual CHC compounds were eliminated with the same kinetics and no lesser-chlorinated intermediates were accumulated, following thus the direct dechlorination scheme. When nZVI-dispersion flows towards the anode through vertical laboratory columns filled with quartz sand, significant enhancement of nZVI migration was recorded because of lower extent of nanoparticle aggregation and increased repulsion forces between the nanoparticles and the surface of silica dioxide. The results of this study have significant consequences for groundwater remediation, mainly for the treatment of slowly degradable DCE in real CHC contaminated groundwater, where it could improve the reactivity, the longevity and the migration of nZVI particles.
Iron oxide nanoparticles (IONPs) have biomedical and biotechnological applications in magnetic imaging, drug-delivery, magnetic separation and purification. The biocompatibility of such particles may be improved by covering them with coating. In presented paper the biochemical anomalies of liver and kidney occurring in animals exposed to d-mannitol-coated iron(III) oxide nanoparticles (M-IONPs) were examined with Fourier transform infrared (FTIR) microspectroscopy. The dose of IONPs used in the study was significantly lower than those used so far in other research. Liver and kidney tissue sections were analysed by chemical mapping of infrared absorption bands originating from proteins, lipids, compounds containing phosphate groups, cholesterol and cholesterol esters. Changes in content and/or structure of the selected biomolecules were evaluated by comparison of the results obtained for animals treated with M-IONPs with those from control group. Biochemical analysis of liver samples demonstrated a few M-IONPs induced anomalies in the organ, mostly concerning the relative content of the selected compounds. The biomolecular changes, following exposition to nanoparticles, were much more intense within the kidney tissue. Biochemical aberrations found in the organ samples indicated at increase of tissue density, anomalies in fatty acids structure as well as changes in relative content of lipids and proteins. The simultaneous accumulation of lipids, phosphate groups as well as cholesterol and cholesterol esters in kidneys of rats exposed to IONPs may indicate that the particles stimulated formation of lipid droplets within the organ.
- MeSH
- cholesterol chemie metabolismus MeSH
- fosfáty chemie metabolismus MeSH
- injekce intravenózní MeSH
- játra chemie účinky léků metabolismus MeSH
- ledviny chemie účinky léků metabolismus MeSH
- lipidy chemie MeSH
- magnetické nanočástice oxidů železa aplikace a dávkování chemie toxicita MeSH
- mannitol chemie MeSH
- metabolismus lipidů účinky léků MeSH
- potkani Wistar MeSH
- sekundární struktura proteinů MeSH
- spektroskopie infračervená s Fourierovou transformací metody MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH