Expression analysis of MND1/GAJ, SPATA22, GAPDHS and ACR genes in testicular biopsies from non-obstructive azoospermia (NOA) patients
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23675907
PubMed Central
PMC3664614
DOI
10.1186/1477-7827-11-42
PII: 1477-7827-11-42
Knihovny.cz E-zdroje
- MeSH
- akrosin genetika MeSH
- azoospermie genetika patologie MeSH
- biopsie MeSH
- dospělí MeSH
- fertilizace MeSH
- glyceraldehyd-3-fosfátdehydrogenasy genetika MeSH
- intracytoplazmatické injekce spermie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nemoci varlat genetika patologie MeSH
- odběr spermií MeSH
- oligospermie genetika patologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- proteiny buněčného cyklu genetika MeSH
- Sertoli cell only syndrom genetika patologie MeSH
- spermatogeneze genetika MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- testis metabolismus patologie MeSH
- úhrn těhotenství na počet žen v reprodukčním věku MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akrosin MeSH
- glyceraldehyd-3-fosfátdehydrogenasy MeSH
- MND1 protein, human MeSH Prohlížeč
- proteiny buněčného cyklu MeSH
- SPATA22 protein, human MeSH Prohlížeč
BACKGROUND: High-throughput studies provide a wide spectrum of genes for use as predictive markers during testicular sperm extraction (TESE) in combination with ICSI. In this work, we used the specimens from testicular biopsies of men with non-obstructive azoospermia who underwent TESE to investigate the expression of spermatogenesis-related genes MND1, SPATA22, GAPDHS and ACR. METHODS: Testicular biopsy specimens were subdivided into three groups: hypospermatogenesis (HS); maturation arrest (MA); and Sertoli cell-only syndrome (SCO). The levels of expression of the spermatogenesis-related genes MND1, SPATA22, GAPDHS and ACR in the testes were compared among these three groups using the reverse transcription polymerase chain reaction (RT-PCR) technique. RESULTS: Analysis of the expression of spermatogenic genes in human testes with abnormal spermatogenesis showed different expression patterns in patients from different groups. Fertilization rate for studied set of patients was 66% and pregnancy rate 29%. For HS group fertilization rate was 72% and pregnancy rate 32%, while for MA group fertilization and pregnancy rates were 54% and 26%, respectively. Fertilization rates in relation to the studied genes were uniformly around 70%, pregnancy rates for ACR and GAPDHS genes were surprisingly low at 6% and 8% correspondingly. CONCLUSIONS: Analysis of the expression of genes involved in spermatogenesis can be a fast additional test for the level of spermatogenesis in testicular samples.
Zobrazit více v PubMed
Shima JE, McLean DJ, McCarrey JR, Griswold MD. The murine testicular transcriptome: characterizing gene expression in the testis during the progression of spermatogenesis. Biol Reprod. 2004;71:319–330. doi: 10.1095/biolreprod.103.026880. PubMed DOI
Gatta V, Raicu F, Ferlin A, Antonucci I, Scioletti AP, Garolla A, Palka G, Foresta C, Stuppia L. Testis transcriptome analysis in male infertility: new insight on the pathogenesis of oligo-azoospermia in cases with and without AZFc microdeletion. BMC Genomics. 2010;11:401. doi: 10.1186/1471-2164-11-401. PubMed DOI PMC
Calvel P, Rolland AD, Jegou B, Pineau C. Testicular postgenomics: targeting the regulation of spermatogenesis. Philos Trans R Soc Lond B Biol Sci. 2010;365:1481–1500. doi: 10.1098/rstb.2009.0294. PubMed DOI PMC
Okada H, Tajima A, Shichiri K, Tanaka A, Tanaka K, Inoue I. Genome-wide expression of azoospermia testes demonstrates a specific profile and implicates ART3 in genetic susceptibility. PLoS Genet. 2008;4:e26. doi: 10.1371/journal.pgen.0040026. PubMed DOI PMC
Ellis PJ, Furlong RA, Conner SJ, Kirkman-Brown J, Afnan M, Barratt C, Griffin DK, Affara NA. Coordinated transcriptional regulation patterns associated with infertility phenotypes in men. J Med Genet. 2007;44:498–508. doi: 10.1136/jmg.2007.049650. PubMed DOI PMC
Rockett JC, Patrizio P, Schmid JE, Hecht NB, Dix DJ. Gene expression patterns associated with infertility in humans and rodent models. Mutat Res. 2004;549:225–240. doi: 10.1016/j.mrfmmm.2003.11.017. PubMed DOI
Tepla O, Peknicova J, Koci K, Mika J, Mrazek M, Elzeinova F. Evaluation of reproductive potential after intracytoplasmic sperm injection of varied human semen tested by antiacrosomal antibodies. Fertil Steril. 2006;86:113–120. doi: 10.1016/j.fertnstert.2005.12.019. PubMed DOI
Holstein AF, Schulze W, Davidoff M. Understanding spermatogenesis is a prerequisite for treatment. Reprod Biol Endocrinol. 2003;1:107. doi: 10.1186/1477-7827-1-107. PubMed DOI PMC
Silber SJ, Van Steirteghem AC, Liu J, Nagy Z, Tournaye H, Devroey P. High fertilization and pregnancy rate after intracytoplasmic sperm injection with spermatozoa obtained from testicle biopsy. Hum Reprod. 1995;10:148–152. doi: 10.1093/humrep/10.1.148. PubMed DOI
Zatecka E, Ded L, Elzeinova F, Kubatova A, Dorosh A, Margaryan H, Dostalova P, Peknicova J. Effect of tetrabrombisphenol A on induction of apoptosis in the testes and changes in expression of selected testicular genes in CD1 mice. Reprod Toxicol. 2012;4:4. PubMed
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134. doi: 10.1186/1471-2105-13-134. PubMed DOI PMC
Liu YJ, Zheng D, Balasubramanian S, Carriero N, Khurana E, Robilotto R, Gerstein MB. Comprehensive analysis of the pseudogenes of glycolytic enzymes in vertebrates: the anomalously high number of GAPDH pseudogenes highlights a recent burst of retrotrans-positional activity. BMC Genomics. 2009;10:480. doi: 10.1186/1471-2164-10-480. PubMed DOI PMC
Barber RD, Harmer DW, Coleman RA, Clark BJ. GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics. 2005;21:389–395. doi: 10.1152/physiolgenomics.00025.2005. PubMed DOI
Vernaeve V, Tournaye H, Schiettecatte J, Verheyen G, Steirteghem AV, Devroey P. Serum inhibin B cannot predict testicular sperm retrieval in patients with non-obstructive azoospermia. Hum Reprod. 2002;17:971–976. doi: 10.1093/humrep/17.4.971. PubMed DOI
Tsujimura A, Matsumiya K, Miyagawa Y, Takao T, Fujita K, Koga M, Takeyama M, Fujioka H, Okuyama A. Prediction of successful outcome of microdissection testicular sperm extraction in men with idiopathic nonobstructive azoospermia. J Urol. 2004;172:1944–1947. doi: 10.1097/01.ju.0000142885.20116.60. PubMed DOI
Samli MM, Dogan I. An artificial neural network for predicting the presence of spermatozoa in the testes of men with nonobstructive azoospermia. J Urol. 2004;171:2354–2357. doi: 10.1097/01.ju.0000125272.03182.c3. PubMed DOI
Ezeh UIO, Taub NA, Moore HDM, Cooke ID. Establishment of predictive variables associated with testicular sperm retrieval in men with non-obstructive azoospermia. Hum Reprod. 1999;14:1005–1012. doi: 10.1093/humrep/14.4.1005. PubMed DOI
Divina P, Vlcek C, Strnad P, Paces V, Forejt J. Global transcriptome analysis of the C57BL/6J mouse testis by SAGE: evidence for nonrandom gene order. BMC Genomics. 2005;6:29. doi: 10.1186/1471-2164-6-29. PubMed DOI PMC
Fox MS, Ares VX, Turek PJ, Haqq C, Reijo Pera RA. Feasibility of global gene expression analysis in testicular biopsies from infertile men. Mol Reprod Dev. 2003;66:403–421. doi: 10.1002/mrd.10364. PubMed DOI
Chalmel F, Rolland AD, Niederhauser-Wiederkehr C, Chung SS, Demougin P, Gattiker A, Moore J, Patard JJ, Wolgemuth DJ, Jegou B, Primig M. The conserved transcriptome in human and rodent male gametogenesis. Proc Natl Acad Sci USA. 2007;104:8346–8351. doi: 10.1073/pnas.0701883104. PubMed DOI PMC
Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci USA. 2003;100:12201–12206. doi: 10.1073/pnas.1635054100. PubMed DOI PMC
Lian J, Zhang X, Tian H, Liang N, Wang Y, Liang C, Li X, Sun F. Altered microRNA expression in patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2009;7:1477–7827. PubMed PMC
Lee JH, Lee DR, Yoon SJ, Chai YG, Roh SI, Yoon HS. Expression of DAZ (deleted in azoospermia), DAZL1 (DAZ-like) and protamine-2 in testis and its application for diagnosis of spermatogenesis in non-obstructive azoospermia. Mol Hum Reprod. 1998;4:827–834. doi: 10.1093/molehr/4.9.827. PubMed DOI
Lin YM, Kuo PL, Lin YH, Teng YN, Nan Lin JS. Messenger RNA transcripts of the meiotic regulator BOULE in the testis of azoospermic men and their application in predicting the success of sperm retrieval. Hum Reprod. 2005;20:782–788. doi: 10.1093/humrep/deh647. PubMed DOI
Ando M, Yamaguchi K, Chiba K, Miyake H, Fujisawa M. Expression of VASA mRNA in testis as a significant predictor of sperm recovery by microdissection testicular sperm extraction in patient with nonobstructive azoospermia. J Androl. 2012;33:711–716. doi: 10.2164/jandrol.110.012278. PubMed DOI
Tsubouchi H, Roeder GS. The Mnd1 protein forms a complex with hop2 to promote homologous chromosome pairing and meiotic double-strand break repair. Mol Cell Biol. 2002;22:3078–3088. doi: 10.1128/MCB.22.9.3078-3088.2002. PubMed DOI PMC
La Salle S, Palmer K, O'Brien M, Schimenti JC, Eppig J, Handel MA. Spata22, a novel vertebrate-specific gene, is required for meiotic progress in mouse germ cells. Biol Reprod. 2012;86(2):1–12. PubMed PMC
Adham IM, Klemm U, Maier WM, Hoyer-Fender S, Tsaousidou S, Engel W. Molecular cloning of preproacrosin and analysis of its expression pattern in spermatogenesis. Eur J Biochem. 1989;182:563–568. doi: 10.1111/j.1432-1033.1989.tb14864.x. PubMed DOI
Baba T, Azuma S, Kashiwabara S, Toyoda Y. Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem. 1994;269:31845–31849. PubMed
Welch JE, Brown PL, O'Brien DA, Magyar PL, Bunch DO, Mori C, Eddy EM. Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl. 2000;21:328–338. PubMed
Welch JE, Barbee RR, Magyar PL, Bunch DO, O'Brien DA. Expression of the spermatogenic cell-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) in rat testis. Mol Reprod Dev. 2006;73:1052–1060. doi: 10.1002/mrd.20235. PubMed DOI
Yang J, Chennathukuzhi V, Miki K, O'Brien DA, Hecht NB. Mouse testis brain RNA-binding protein/translin selectively binds to the messenger RNA of the fibrous sheath protein glyceraldehyde 3-phosphate dehydrogenase-S and suppresses its translation in vitro. Biol Reprod. 2003;68:853–859. PubMed
Li H, Wu C, Gu X, Xiong C. A novel application of cell-free seminal mRNA: non-invasive identification of the presence of germ cells or complete obstruction in men with azoospermia. Hum Reprod. 2012;27:991–997. doi: 10.1093/humrep/der481. PubMed DOI
Aslani F, Modarresi MH, Soltanghoraee H, Akhondi MM, Shabani A, Lakpour N, Sadeghi MR. Seminal molecular markers as a non-invasive diagnostic tool for the evaluation of spermatogenesis in non-obstructive azoospermia. Syst Biol Reprod Med. 2011;57:190–196. doi: 10.3109/19396368.2011.569906. PubMed DOI