An efficient proteomic approach to analyze agriculture crop biomass
Jazyk angličtina Země Nizozemsko Médium print
Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem
- MeSH
- biomasa MeSH
- proteomika metody MeSH
- rostlinné proteiny chemie metabolismus MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- zemědělské plodiny chemie enzymologie růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
While a plant cell wall is formed by a complex of various components, including polysaccharides and structural proteins, its composition and representation may vary during cell growth. Currently, plant research targets the proteins participating in wall loosening. Multiple classes of enzymes, including various hemicellulases and cellulases, are required for plant material degradation to achieve the maximum decomposition. Identifying the set of proteins involved in the breakdown of cell-wall polymers is important to understand plant material conversion into suitable products. The objective of this study was to describe a method which can be used to carry out proteomics analysis of complex plant samples and identify enzymes degrading biomass. For this purpose we used proteomic techniques including gel electrophoresis, high pressure liquid chromatography combinated with mass spectrometry followed by data evaluation using databases searching. Results show that more than 50 % of these activities correspond to enzymes with proteolytic function. This study was focused primarily on enzymes able to breakdown the lignocellulosic and hemicellulosic parts that are very important for the material conversion into required products of degradation.
Zobrazit více v PubMed
Proteomics. 2005 Jan;5(1):212-21 PubMed
Plant J. 2008 May;54(4):559-68 PubMed
Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11417-22 PubMed
Bioresour Technol. 2005 Apr;96(6):673-86 PubMed
Curr Opin Plant Biol. 2008 Jun;11(3):278-85 PubMed
J Gen Physiol. 1947 Mar 20;30(4):291-310 PubMed
Plant Cell. 2004 Dec;16(12):3285-303 PubMed
Methods Enzymol. 2009;463:331-42 PubMed
J Biol Chem. 1952 Mar;195(1):19-23 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Plant Cell. 2000 Mar;12(3):319-41 PubMed
Plant Physiol. 2001 Jun;126(2):501-8 PubMed
Science. 2011 Jan 28;331(6016):463-7 PubMed
Plant Physiol Biochem. 2006 Jul-Sep;44(7-9):435-49 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Curr Opin Biotechnol. 1999 Aug;10(4):358-64 PubMed
Electrophoresis. 1988 Jun;9(6):255-62 PubMed
Nat Rev Microbiol. 2004 Jul;2(7):541-51 PubMed
Plant Methods. 2006 May 27;2:10 PubMed
Nucleic Acids Res. 2009 Jan;37(Database issue):D233-8 PubMed
Proteomics. 2006 Jan;6(1):301-11 PubMed
Plant Physiol. 2000 Feb;122(2):295-318 PubMed
Curr Opin Plant Biol. 2008 Jun;11(3):308-13 PubMed
Mol Cell Proteomics. 2004 Jan;3(1):1-9 PubMed
Annu Rev Plant Biol. 2009;60:165-82 PubMed
Plant Physiol. 2001 Jun;126(2):910-20 PubMed
Anal Bioanal Chem. 2008 May;391(1):391-403 PubMed
J Ind Microbiol Biotechnol. 2003 May;30(5):279-91 PubMed
Electrophoresis. 2002 Jun;23(11):1754-65 PubMed
Rapid Commun Mass Spectrom. 2005;19(18):2725-8 PubMed
Curr Opin Biotechnol. 2005 Oct;16(5):577-83 PubMed
Appl Biochem Biotechnol. 2005 Spring;121-124:1081-99 PubMed