On homology modeling of the M₂ muscarinic acetylcholine receptor subtype
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23812908
PubMed Central
PMC3717152
DOI
10.1007/s10822-013-9660-8
Knihovny.cz E-zdroje
- MeSH
- konformace proteinů * MeSH
- krystalografie rentgenová * MeSH
- lidé MeSH
- molekulární modely MeSH
- receptor muskarinový M2 chemie MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- simulace molekulového dockingu MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CHRM2 protein, human MeSH Prohlížeč
- receptor muskarinový M2 MeSH
Twelve homology models of the human M2 muscarinic receptor using different sets of templates have been designed using the Prime program or the modeller program and compared to crystallographic structure (PDB:3UON). The best models were obtained using single template of the closest published structure, the M3 muscarinic receptor (PDB:4DAJ). Adding more (structurally distant) templates led to worse models. Data document a key role of the template in homology modeling. The models differ substantially. The quality checks built into the programs do not correlate with the RMSDs to the crystallographic structure and cannot be used to select the best model. Re-docking of the antagonists present in crystallographic structure and relative binding energy estimation by calculating MM/GBSA in Prime and the binding energy function in YASARA suggested it could be possible to evaluate the quality of the orthosteric binding site based on the prediction of relative binding energies. Although estimation of relative binding energies distinguishes between relatively good and bad models it does not indicate the best one. On the other hand, visual inspection of the models for known features and knowledge-based analysis of the intramolecular interactions allows an experimenter to select overall best models manually.
Zobrazit více v PubMed
Jakubík J, Doležal V, El-Fakahany EE, Janíčková H, Randáková A, Šantrůčková E. Perspective for design of selective muscarinic agonists. In: Babušíková E, Dobrota D, Lehotský J, editors. New frontiers in molecular mechanisms in psychiatric and neurologic disorders. Martin: Jesseniova lekárska fakulta UK; 2011.
Jakubík J, El-Fakahany EE. Allosteric modulation of muscarinic acetylcholine receptors. Pharmaceuticals. 2010;9:2838–2860. doi: 10.3390/ph3092838. PubMed DOI PMC
Christopoulos A, El-Fakahany EE. Novel persistent activation of muscarinic M1 receptors by xanomeline. Eur J Pharmacol. 1997;334:R3–R4. doi: 10.1016/S0014-2999(97)01162-X. PubMed DOI
Caffrey M. Membrane protein crystallization. J Struct Biol. 2003;142:108–132. doi: 10.1016/S1047-8477(03)00043-1. PubMed DOI
Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC
Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–745. doi: 10.1126/science.289.5480.739. PubMed DOI
Okada T, Sugihara M, Bondar A, Elstner M, Entel P, et al. The retinal conformation and its environment in rhodopsin in light of a new 2.2 A crystal structure. J Mol Biol. 2004;342:571–583. doi: 10.1016/j.jmb.2004.07.044. PubMed DOI
Jöhren K, Höltje H. A model of the human M2 muscarinic acetylcholine receptor. J Comput Aided Mol Des. 2002;16:795–801. doi: 10.1023/A:1023880611709. PubMed DOI
Hulme EC, Lu ZL, Saldanha JW, Bee MS. Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans. 2003;31:29–34. doi: 10.1042/BST0310029. PubMed DOI
Voigtländer U, Jöhren K, Mohr M, Raasch A, Tränkle C, et al. Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupie. Mol Pharmacol. 2003;64:21–31. doi: 10.1124/mol.64.1.21. PubMed DOI
Prilla S, Schrobang J, Ellis J, Höltje H, Mohr K. Allosteric interactions with muscarinic acetylcholine receptors: complex role of the conserved tryptophan M2422Trp in a critical cluster of amino acids for baseline affinity, subtype selectivity, and cooperativity. Mol Pharmacol. 2006;70:181–193. PubMed
Jäger D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, et al. Allosteric small molecules unveil a role of an extracellular E2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem. 2007;282:34968–34976. doi: 10.1074/jbc.M705563200. PubMed DOI
Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007;318:1258–1265. doi: 10.1126/science.1150577. PubMed DOI PMC
Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola V, et al. A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure. 2008;16:897–905. doi: 10.1016/j.str.2008.05.001. PubMed DOI PMC
Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, et al. Structure of a beta1-adrenergic G-protein-coupled receptor. Nature. 2008;454:486–491. doi: 10.1038/nature07101. PubMed DOI PMC
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—a self-parameterizing force field. Proteins. 2002;47:393–402. doi: 10.1002/prot.10104. PubMed DOI
Eswar N, Webb B, Marti-Renom MA, Madhusudhan MS, Eramian D et al. (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinform Chapter 5:Unit 5.6 PubMed PMC
Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem. 2004;47:1739–1749. doi: 10.1021/jm0306430. PubMed DOI
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem. 1998;19:1639–1662. doi: 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem. 2006;49:4805–4808. doi: 10.1021/jm060522a. PubMed DOI
Hou T, Wang J, Li Y, Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model. 2011;51:69–82. doi: 10.1021/ci100275a. PubMed DOI PMC
Nabuurs SB, Wagener M, de Vlieg J. A flexible approach to induced fit docking. J Med Chem. 2007;50:6507–6518. doi: 10.1021/jm070593p. PubMed DOI
Schulman JM, Sabio ML, Disch RL. Recognition of cholinergic agonists by the muscarinic receptor. 1. Acetylcholine and other agonists with the NCCOCC backbone. J Med Chem. 1983;26:817–823. doi: 10.1021/jm00360a007. PubMed DOI
Fraser CM, Wang CD, Robinson DA, Gocayne JD, Venter JC. Site-directed mutagenesis of m1 muscarinic acetylcholine receptors: conserved aspartic acids play important roles in receptor function. Mol Pharmacol. 1989;36:840–847. PubMed
Curtis CA, Wheatley M, Bansal S, Birdsall NJ, Eveleigh P, et al. Propylbenzilylcholine mustard labels an acidic residue in transmembrane helix 3 of the muscarinic receptor. J Biol Chem. 1989;264:489–495. PubMed
Kurtenbach E, Curtis CA, Pedder EK, Aitken A, Harris AC, et al. Muscarinic acetylcholine receptors. Peptide sequencing identifies residues involved in antagonist binding and disulfide bond formation. J Biol Chem. 1990;265:13702–13708. PubMed
Spalding TA, Birdsall NJ, Curtis CA, Hulme EC. Acetylcholine mustard labels the binding site aspartate in muscarinic acetylcholine receptors. J Biol Chem. 1994;269:4092–4097. PubMed
Blüml K, Mutschler E, Wess J. Functional role in ligand binding and receptor activation of an asparagine residue present in the sixth transmembrane domain of all muscarinic acetylcholine receptors. J Biol Chem. 1994;269:18870–18876. PubMed
Murgolo NJ, Kozlowski J, Tice MA, Hollinger FP, Brown JE, et al. The N4 nitrogen of pirenzepine is responsible for selective binding of the M1 subtype human muscarinic receptor. Bioorg Med Chem Lett. 1996;6:785–788. doi: 10.1016/0960-894X(96)00107-2. DOI
Goodwin JA, Hulme EC, Langmead CJ, Tehan BG. Roof and floor of the muscarinic binding pocket: variations in the binding modes of orthosteric ligands. Mol Pharmacol. 2007;72:1484–1496. doi: 10.1124/mol.107.038265. PubMed DOI
Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, et al. Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science. 2010;330:1066–1071. doi: 10.1126/science.1194396. PubMed DOI PMC
Chien EYT, Liu W, Zhao Q, Katritch V, Han GW, et al. Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science. 2010;330:1091–1095. doi: 10.1126/science.1197410. PubMed DOI PMC
Doré AS, Robertson N, Errey JC, Ng I, Hollenstein K, et al. Structure of the adenosine A(2A) receptor in complex with ZM241385 and the xanthines XAC and caffeine. Structure. 2011;19:1283–1293. doi: 10.1016/j.str.2011.06.014. PubMed DOI PMC
Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, et al. Structure of the human histamine H1 receptor complex with doxepin. Nature. 2011;475:65–70. doi: 10.1038/nature10236. PubMed DOI PMC
Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, et al. Crystal structure of a lipid G protein-coupled receptor. Science. 2012;335:851–855. doi: 10.1126/science.1215904. PubMed DOI PMC
Wu H, Wacker D, Mileni M, Katritch V, Han GW, et al. Structure of the human κ-opioid receptor in complex with JDTic. Nature. 2012;485:327–332. doi: 10.1038/nature10939. PubMed DOI PMC
Ballesteros J, Weinstein H. Integrated methods for the construction of three dimensional models and computational probing of structure function relations in g protein-coupled receptors. In: Sealfon S, Conn P, editors. Methods in neurosciences. San Diego: Academic Press; 1995.
Baldwin JM, Schertler GF, Unger VM. An alpha-carbon template for the transmembrane helices in the rhodopsin family of G-protein-coupled receptors. J Mol Biol. 1997;272:144–164. doi: 10.1006/jmbi.1997.1240. PubMed DOI
Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP et al. (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proceedings of the ACM/IEEE conference on supercomputing (SC06) Tampa, Florida, November 11–17
Konagurthu AS, Whisstock J, Stuckey PJ. Progressive multiple alignment using sequence triplet optimizations and three-residue exchange costs. J Bioinform Comput Biol. 2004;2:719–745. doi: 10.1142/S0219720004000831. PubMed DOI
Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, et al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem. 2004;47:1750–1759. doi: 10.1021/jm030644s. PubMed DOI
Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. doi: 10.1002/jcc.21256. PubMed DOI PMC
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins. 2004;57:678–683. doi: 10.1002/prot.20251. PubMed DOI