When the body hides the ancestry: phylogeny of morphologically modified epizoic earwigs based on molecular evidence
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23826171
PubMed Central
PMC3691250
DOI
10.1371/journal.pone.0066900
PII: PONE-D-13-02524
Knihovny.cz E-zdroje
- MeSH
- Bayesova věta MeSH
- časové faktory MeSH
- fylogeneze * MeSH
- histony genetika MeSH
- hmyz anatomie a histologie klasifikace genetika MeSH
- Markovovy řetězce MeSH
- metoda Monte Carlo MeSH
- ribozomální DNA genetika MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histony MeSH
- ribozomální DNA MeSH
Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. Our results also indicate that the evolutionary consequences of the transition to an ectoparazitic mode of living, which is extremely rare in earwigs, have biased previous morphology-based hypotheses regarding the phylogeny of this insect group.
Zobrazit více v PubMed
Popham EJ (2000) The geographical distribution of Dermaptera with reference to continental drift. J Nat Hist 34: 2007–2027.
Deem LS (2012) Dermaptera Species File. Version 1.0/4.0. [retrieval date]. Available: http://Dermaptera.SpeciesFile.org. Accessed 2013 May 31.
Sakai S (1982) A new proposed classification of the Dermaptera with special reference to the check list of the Dermaptera of the world. Bull Daito Bunka Univ 20: 1–108.
Haas F, Gorb SN, Wootton RJ (2000) Elastic joints in dermapteran hind wings : materials and wing folding. Arthropod Struct Dev 29: 137–146. PubMed
Rentz DCF, Kevan DKM (1991) Dermaptera. In: Naumann ID, editor. The insects of Australia: a textbook for students and research workers. Ithaca, NY: Cornell University Press. 360–368.
Steinmann H (1973) A zoogeographical check-list of world Dermaptera. Folia Entomol Hung 26: 145–154.
Popham EJ (1985) The mutual affinities of the major earwig taxa (Insecta, Dermaptera). Z Zool Syst Evol 23: 199–214.
Giles ET (1963) The comparative external morphology and affinities of the Dermaptera. Trans R Entomol Soc Lond 115: 95–164.
Haas F, Kukalova-Peck J (2001) Dermaptera hindwing structure and folding: new evidence for superordinal relationship within Neoptera (Insecta). Eur J Entomol 98: 445–504.
Haas F (1995) The phylogeny of Forficulina, a suborder of the Dermaptera. Syst Zool 20: 85–98.
Jarvis KJ, Haas F, Whiting MF (2005) Phylogeny of earwigs (Insecta: Dermaptera) based on molecular and morphological evidence: reconsidering the classification of Dermaptera. Syst Entomol 30: 442–453.
Klass KD (2001) The female abdomen of the viviparous earwig Hemimerus vosseleri (Insecta: Dermaptera: Hemimeridae), with a discussion of the postgenital abdomen of Insecta. Zool J Linn Soc 131: 251–307.
Engel MS (2003) The Earwigs of Kansas, with a Key to Genera North of Mexico (Insecta: Dermaptera). Trans Kans Acad Sci 106: 115–123.
Grimaldi D, Engle M (2005) Evolution of Insects. Cambridge: Cambridge University Press. 755 p.
Engel MS, Haas F (2007) Family-Group names for earwigs (Dermaptera). Am Mus Novit American 3567: 1–20.
Tworzydlo W, Bilinski SM, Kocarek P, Haas F (2010) Ovaries and germline cysts and their evolution in Dermaptera (Insecta). Arthropod Struct Dev 39: 360–368. PubMed
Tworzydło W, Kocarek P, Bilinski SM (2010) Structure of the ovaries and early stages of oogenesis in the parasitic earwig, Arixenia esau (Dermaptera: Arixenina). In: Abstracts of the XXIX Conference on Embryology Plants - Animals – Humans, May 19–21, 2010, Toruń-Ciechocinek, Poland. Acta Biol Cracov Bot 52 (suppl. 1)95.
Tworzydlo W, Lechowska-Liszka A, Kocarek P, Bilinski SM (2012): Morphology of the ovarioles and the mode of oogenesis of Arixenia esau support the inclusion of Arixeniina to the Eudermaptera. Zool Anz. doi:10.1016/j.jcz.2012.11.002 DOI
Sakai S (1987) Phylogenetic and evolutionary information on Dermaptera from the point of view of insect integrated taxonomy. In: Baccetti B, editor. Evolutionary Biology of Orthopteroid Insects, 496–513. New York: Halsted Press.
Kocarek P (2009) A case of viviparity in a tropical non-parasitizing earwig (Dermaptera Spongiphoridae). Trop Zool 22: 237–241.
Nakata S, Maa TC (1974) A review of the parasitic earwigs (Dermaptera, Arixeniina; Hemimerina). Pac Insects 16: 307–374.
Walker F (1871) Catalogue of the specimens of Dermaptera Saltatoria in the collection of the British Museum. Part. 5. London. 116 p.
Saussure H (1879) Spicilegia entomologica genevensia. 1. Sur le genre Hemimerus Walk. Mem Soc Hist Nat Geneve 26: 399–420.
Sharp D (1892) Concerning Hemimerus talpoides Walk. Ent Mon Mag 28: 212–213.
Sharp D (1895) Family II. Hemimeridae. In: Harmer SF, Shipley AE (Eds.): The Cambridge Natural History 5: 217–219.
Burr M (1911) Dermaptera. In: Wytsman PAG, editor. Genera Insectorum, Fascicle 122. Bruxelles: Wytsman. 112 p.
Heymons R (1911) Ueber die Lebensweise von Hemimerus (Orth.). Deut Ent Z 1911: 163–174.
Hansen HJ (1933) External organs in Dermaptera especially Forficulidae. Ent Meddel 18: 349–358.
Rehn JAG, Rehn JWH (1935) A Study of the Genus Hemimerus (Dermaptera, Hemimerina, Hemimeridae). Proc Acad Nat Sci Phila 87: 457–508.
Rehn JAG, Rehn JWH (1937) Further Notes on the Genus Hemimerus (Dermaptera, Hemimerina, Hemimeridae). Proc Acad Nat Sci Phila 89: 331–335.
Popham EJ (1961) On the systematic position of Hemimerus Walker – a case for ordinal status. Proc R Entomol Soc Lond Ser B 30: 19–25.
Jordan K (1909) Description of a new kind of apterous earwig, apparently parasitic on a bat. Novit Zool 16: 313–326.
Hendlirsch A (1925) Ordnung: Dermaptera (Deg.) Kirby (Ohrwurmer). In: Schroder C (Ed.) Handbuch der Entomologie 3, 472–477.
Popham EJ (1962) The anatomy related to the feeding habits of Arixenia and Hemimerus (Dermaptera). Proc Zool Soc Lond 139: 429–450.
Popham EJ (1965) The functional morphology of the reproductive organs of the common earwig (Forficula auricularia) and other Dermaptera with reference to the natural classification of the order. J Zool 146: 1–43.
Sakai S, Hoshiba H, Imanishi M (1988) Cytotaxonomic studies on the chromosomes of the Dermaptera with special reference to two chelisochid species. In: International Congress of Entomology XVIII, p.62.
White MJD (1971) The chromosomes of Hemimerus bouvieri Chopard (Dermaptera). Chromosoma 34: 183–189. PubMed
White MJD (1972) The chromosomes of Arixenia esau Jordan (Dermaptera). Chromosoma 36: 338–342. PubMed
Wirth T, Le Guellec R, Veuille M (1999) Directional substitution and evolution of nucleotide content in the cytochrome oxidase II gene in earwigs (dermapteran insects). Mol Biol Evol 16: 1645–1653. PubMed
Guillet S, Vancassel M (2001) Dermapteran life-history evolution and phylogeny with special reference to the Forficulidae family. Evol Ecol Res 3: 441–447.
Colgan DJ, Cassis G, Beacham E (2003) Setting the molecular phylogenetic framework for the Dermaptera. Insect Syst Evol 34: 65–80.
Kamimura Y (2004) In search of the origin of twin penises: molecular phylogeny of earwigs (Dermaptera: Forficulina) based on mitochondrial and nuclear ribosomal RNA Genes. Ann Entomol Soc Am 97: 903–912.
Whiting MF (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31: 93–104.
Von Reumont BM, Meusemann K, Szucsich NU, Dell Ampio E, Gowri-Shankar V, et al. (2009) Can comprehensive background knowledge be incorporated into substitution models to improve phylogenetic analyses? A case study on major arthropod relationships. BMC Evol Biol 9: 119. PubMed PMC
Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucl Acids Res 16: 10881–10890. PubMed PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739. PubMed PMC
Katoh K, Kuma K, Toh H, Miyata T (2004) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nuc Acid Res 33: 511–518. PubMed PMC
Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56: 564–577. PubMed
Warnow T (2012) Standard maximum likelihood analyses of alignments with gaps can be statistically inconsistent. PLOS Curr. Tree of Life: RRN1308. PubMed PMC
De Rijk P, Neefs JM, Van de Peer Y, De Wachter R (1992) Compilation of small ribosomal subunit RNA sequences. Nucl Acids Res 20: 2075–2089. PubMed PMC
De Rijk P, Van de Peer Y, Chapelle S, De Wachter R (1994) Database on the structure of large ribosomal subunit RNA. Nucl Acids Res 22: 3495–3501. PubMed PMC
Librado P, Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. PubMed
Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50: 580–601. PubMed
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol 61: 539–542. PubMed PMC
Wilgenbusch JC, Warren DL, Swofford DL (2004) AWTY: A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Available: http://ceb.csit.fsu.edu/awty. Accessed 2013 May 31. PubMed
Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, et al. (1988) Molecular phylogeny of the animal kingdom. Science 239: 748–753. PubMed
Hedges SB, Moberg KD, Maxson LR (1990) Tetrapod phylogeny inferred from 18s and 28s ribosomal RNA sequences and review of the evidence for amniote relationships. Mol Biol Evol 7: 607–633. PubMed
Murphy WJ, Eizirik E, O’Brien SJ, Madsen O, Scally M, et al. (2001) Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294: 2348–2351. PubMed
Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, et al. (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320: 1763–1768. PubMed
Huelsenbeck JP, Ronquist F, Nielsen R, Bollback JP (2001) Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314. PubMed
Steinmann H (1986) Dermaptera: Catadermaptera I. Tierreich 102. Berlin–New York: Walter de Gruyter. 345 p.
Steinmann H (1989) Dermaptera Catadermaptera 2. Tierreich 108. Berlin–New York: Walter de Gruyter. 504 p.
Steinmann H (1990) Dermaptera: Eudermaptera I. Tierreich 106. Berlin–New York: Walter de Gruyter. 558 p.
Steinmann H (1993) Dermaptera: Eudermaptera II. Tierreich 108. Berlin–New York: Walter de Gruyter. 709 p.
Patterson C (1987) Molecules and morphology in evolution: conflict or compromise? Cambridge: Cambridge University Press. 229 p.
Lecointre G, Deleporte P (2005) Total evidence requires exclusion of phylogenetically misleading data. Zoologica Scripta 34: 101–117.
Page RDM, Holmes EC (2000) Molecular evolution: a phylogenetic approach. Oxford: Blackwell science.
Avise JC (2004) Molecular markers, natural history and evolution. 2nd ed. Sunderland, MA: Sinauer Associates, Inc. 684 p.