Nonlinear regression models for determination of nicotinamide adenine dinucleotide content in human embryonic stem cells

. 2013 Dec ; 9 (6) : 786-93.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23832307

Recent evidence suggests that energy metabolism contributes to molecular mechanisms controlling stem cell identity. For example, human embryonic stem cells (hESCs) receive their metabolic energy mostly via glycolysis rather than mitochondrial oxidative phosphorylation. This suggests a connection of metabolic homeostasis to stemness. Nicotinamide adenine dinucleotide (NAD) is an important cellular redox carrier and a cofactor for various metabolic pathways, including glycolysis. Therefore, accurate determination of NAD cellular levels and dynamics is of growing importance for understanding the physiology of stem cells. Conventional analytic methods for the determination of metabolite levels rely on linear calibration curves. However, in actual practice many two-enzyme cycling assays, such as the assay systems used in this work, display prominently nonlinear behavior. Here we present a diaphorase/lactate dehydrogenase NAD cycling assay optimized for hESCs, together with a mechanism-based, nonlinear regression models for the determination of NAD(+), NADH, and total NAD. We also present experimental data on metabolic homeostasis of hESC under various physiological conditions. We show that NAD(+)/NADH ratio varies considerably with time in culture after routine change of medium, while the total NAD content undergoes relatively minor changes. In addition, we show that the NAD(+)/NADH ratio, as well as the total NAD levels, vary between stem cells and their differentiated counterparts. Importantly, the NAD(+)/NADH ratio was found to be substantially higher in hESC-derived fibroblasts versus hESCs. Overall, our nonlinear mathematical model is applicable to other enzymatic amplification systems.

Zobrazit více v PubMed

Antioxid Redox Signal. 2007 Mar;9(3):293-9 PubMed

Curr Opin Cell Biol. 2003 Apr;15(2):241-6 PubMed

Stem Cells. 2013 Apr;31(4):693-702 PubMed

Stem Cells Transl Med. 2013 Apr;2(4):246-54 PubMed

Curr Pharm Des. 2009;15(1):29-38 PubMed

J Cell Biol. 2005 Aug 1;170(3):349-55 PubMed

Invest New Drugs. 2008 Feb;26(1):45-51 PubMed

Science. 2004 Aug 13;305(5686):1010-3 PubMed

Nat Rev Mol Cell Biol. 2012 Mar 07;13(4):270-6 PubMed

Biochem J. 2002 Oct 1;367(Pt 1):163-8 PubMed

Anal Biochem. 1996 Jun 1;237(2):260-73 PubMed

J Sep Sci. 2009 Jul;32(14):2416-20 PubMed

FEBS Lett. 1973 Mar 1;30(2):225-228 PubMed

Mol Cell Endocrinol. 1998 Feb;137(1):59-67 PubMed

Clin Chem. 1993 May;39(5):766-72 PubMed

Mol Cell Biochem. 1980 Nov 20;32(3):135-46 PubMed

Biosens Bioelectron. 2010 Oct 15;26(2):411-7 PubMed

J Biol Chem. 2001 Sep 21;276(38):36000-7 PubMed

Cancer Res. 2003 Nov 1;63(21):7436-42 PubMed

J Neurosci Res. 2007 Nov 15;85(15):3407-15 PubMed

Stem Cells. 2005 Sep;23(8):1200-11 PubMed

Anal Chem. 2009 Feb 1;81(3):1280-4 PubMed

Cell Stem Cell. 2012 Nov 2;11(5):596-606 PubMed

Cell Metab. 2013 Mar 5;17(3):448-455 PubMed

Ann N Y Acad Sci. 2012 Apr;1254:82-9 PubMed

J Biol Chem. 1961 Oct;236:2746-55 PubMed

Methods Enzymol. 2009;467:247-280 PubMed

Cell. 2007 Sep 21;130(6):1095-107 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...