Regulation of photosynthesis during heterocyst differentiation in Anabaena sp. strain PCC 7120 investigated in vivo at single-cell level by chlorophyll fluorescence kinetic microscopy
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- aklimatizace fyziologie MeSH
- Anabaena cytologie fyziologie MeSH
- analýza jednotlivých buněk metody MeSH
- biologické pigmenty metabolismus MeSH
- chlorofyl metabolismus MeSH
- dusík nedostatek MeSH
- fluorescenční mikroskopie metody MeSH
- fotosyntéza fyziologie MeSH
- fyziologický stres MeSH
- kinetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biologické pigmenty MeSH
- chlorofyl MeSH
- dusík MeSH
Changes of photosynthetic activity in vivo of individual heterocysts and vegetative cells in the diazotrophic cyanobacterium Anabaena sp. strain PCC 7120 during the course of diazotrophic acclimation were determined using fluorescence kinetic microscopy (FKM). Distinct phases of stress and acclimation following nitrogen step-down were observed. The first was a period of perception, in which the cells used their internally stored nitrogen without detectable loss of PS II activity or pigments. In the second, the stress phase of nitrogen limitation, the cell differentiation occurred and an abrupt decline of fluorescence yield was observed. This decline in fluorescence was not paralleled by a corresponding decline in photosynthetic pigment content and PS II activity. Both maximal quantum yield and sustained electron flow were not altered in vegetative cells, only in the forming heterocysts. The third, acclimation phase started first in the differentiating heterocysts with a recovery of PS II photochemical yields [Formula: see text] Afterwards, the onset of nitrogenase activity was observed, followed by the restoration of antenna pigments in the vegetative cells, but not in the heterocysts. Surprisingly, mature heterocysts were found to have an intact PS II as judged by photochemical yields, but a strongly reduced PS II-associated antenna as judged by decreased F 0. The possible importance of the functional PS II in heterocysts is discussed. Also, the FKM approach allowed to follow in vivo and evaluate the heterogeneity in photosynthetic performance among individual vegetative cells as well as heterocysts in the course of diazotrophic acclimation. Some cells along the filament (so-called "superbright cells") were observed to display transiently increased fluorescence yield, which apparently proceeded by apoptosis.
Zobrazit více v PubMed
Biochim Biophys Acta. 2012 Aug;1817(8):1237-47 PubMed
Curr Opin Microbiol. 2000 Dec;3(6):618-24 PubMed
Nature. 1966 Jan 1;209(5018):94-5 PubMed
Biochim Biophys Acta. 1980 Aug 5;592(1):113-20 PubMed
J Bacteriol. 2002 May;184(9):2491-9 PubMed
Microbiol Mol Biol Rev. 2002 Mar;66(1):94-121; table of contents PubMed
Plant Cell Physiol. 2012 Aug;53(8):1492-506 PubMed
Photosynth Res. 2005 Jun;84(1-3):113-20 PubMed
Mol Microbiol. 2006 Jan;59(2):367-75 PubMed
Arch Mikrobiol. 1972;87(4):341-52 PubMed
Anal Chem. 2007 Oct 15;79(20):7611-27 PubMed
FEMS Microbiol Rev. 2004 Oct;28(4):469-87 PubMed
Annu Rev Genet. 1996;30:59-78 PubMed
Biochim Biophys Acta. 2009 Oct;1787(10):1170-8 PubMed
Plant Physiol. 1973 Nov;52(5):480-3 PubMed
New Phytol. 2008;179(3):784-798 PubMed
Nature. 1969 Oct 18;224(5216):226-8 PubMed
Biochim Biophys Acta. 1972 Jan 21;256(1):157-61 PubMed
Arch Microbiol. 1974;101(2):161-7 PubMed
Nat Rev Microbiol. 2010 Jan;8(1):39-50 PubMed
Res Microbiol. 2003 Apr;154(3):157-64 PubMed
Mol Microbiol. 2003 Mar;47(5):1239-49 PubMed
New Phytol. 2010 Jan;185(1):173-88 PubMed
J Bacteriol. 2000 Jun;182(12):3572-81 PubMed
Mol Microbiol. 1998 Mar;27(6):1193-202 PubMed
Biochim Biophys Acta. 2009 Apr;1787(4):252-63 PubMed
J Bacteriol. 1989 Aug;171(8):4138-45 PubMed
Proc Natl Acad Sci U S A. 2011 Dec 13;108(50):20130-5 PubMed
Biochim Biophys Acta. 2012 Jan;1817(1):158-66 PubMed
DNA Res. 2003 Jun 30;10(3):97-113 PubMed
FEBS Lett. 1977;78(1):49-52 PubMed
Photosynth Res. 1989 Apr;20(1):1-34 PubMed
Plant Physiol. 2013 Mar;161(3):1321-33 PubMed
Plant Physiol. 1955 Jul;30(4):366-72 PubMed
Planta. 1969 Mar;86(1):92-7 PubMed
Biochim Biophys Acta. 2009 Mar;1787(3):155-67 PubMed
Biochim Biophys Acta. 1976 Feb 16;423(2):189-95 PubMed
Science. 2001 Nov 16;294(5546):1534-7 PubMed
Cold Spring Harb Perspect Biol. 2010 Apr;2(4):a000315 PubMed
BMC Genomics. 2011 Jun 28;12:332 PubMed
New Phytol. 2007;175(4):655-674 PubMed
Plant Physiol. 2004 Aug;135(4):2120-33 PubMed
J Bacteriol. 1994 Dec;176(24):7543-9 PubMed
Z Naturforsch C J Biosci. 1994 Jan-Feb;49(1-2):70-8 PubMed
Biochim Biophys Acta. 1978 May 10;502(2):298-308 PubMed
Trends Microbiol. 2012 Nov;20(11):548-57 PubMed
Photochem Photobiol. 2002 Sep;76(3):310-3 PubMed