Diversity and biotic homogenization of urban land-snail faunas in relation to habitat types and macroclimate in 32 central European cities

. 2013 ; 8 (8) : e71783. [epub] 20130806

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23936525

The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type.

Zobrazit více v PubMed

Antrop M (2004) Landscape change and the urbanization process in Europe. Landsc Urban Plann 67: 9–26. doi:10.1016/S0169-2046(03)00026-4. DOI

Gilbert OL (1989) The ecology of urban habitats. London: Chapman and Hall. 369pp.

Pyšek P (1998) Alien and native species in Central European urban floras: a quantitative comparison. J Biogeogr 25: 155–163. doi:10.1046/j.1365-2699.1998.251177.x. DOI

Kühn I, Brandl R, Klotz S (2004) The flora of German cities is naturally species rich. Evol Ecol Res 6: 749–764.

Wang G, Jiang G, Zhou Y, Liu Q, Ji Y et al. (2007) Biodiversity conservation in a fast-growing metropolitan area in China: a case study of plant diversity in Beijing. Biodivers Conserv 16: 4025–4038. doi:10.1007/s10531-007-9205-3. DOI

Wilson EO (1988) Biodiversity. Washington: National Academy Press. 496pp.

McKinney ML (2004) Do exotics homogenize or differentiate communities? Roles of sampling and exotic species richness. Biol Invasions 6: 495–504. doi:10.1023/B:BINV.0000041562.31023.42. DOI

Roy DB, Hill MO, Rothery P (1999) Effects of urban land cover on the local species pool in Britain. Ecography 22: 507–515. doi:10.1111/j.1600-0587.1999.tb01279.x. DOI

Kühn I, Klotz S (2006) Urbanization and homogenization – comparing the floras of urban and rural areas in Germany. Biol Conserv 127: 292–300. doi:10.1016/j.biocon.2005.06.033. DOI

Pyšek P, Bacher S, Chytrý M, Jarošík V, Wild J et al. (2010) Contrasting patterns in the invasions of European terrestrial and freshwater habitats by alien plants, insects and vertebrates. Glob Ecol Biogeogr 19: 317–331. doi:10.1111/j.1466-8238.2009.00514.x. DOI

Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K et al. (2012) Native and alien floras in urban habitats: a comparison across 32 cities of central Europe. Glob Ecol Biogeogr 21: 545–555. doi:10.1111/j.1466-8238.2011.00704.x. DOI

McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14: 450–453. doi:10.1016/S0169-5347(99)01679-1. PubMed: 10511724. PubMed DOI

Baiser B, Olden JD, Record S, Lockwood JL, McKinney ML (2012) Pattern and process of biotic homogenization in the New Pangaea. Proc Biol Sci 279: 4772–4777. doi:10.1098/rspb.2012.1651. PubMed: 23055062. PubMed DOI PMC

Olden JD, Poff NL (2003) Toward a mechanistic understanding and prediction of biotic homogenization. Am Nat 162: 442–460. doi:10.1086/378212. PubMed: 14582007. PubMed DOI

Lososová Z, Chytrý M, Tichý L, Danihelka J, Fajmon K et al. (2012) Biotic homogenization of Central European urban floras depends on residence time of alien species and habitat types. Biol Conserv 145: 179–184. doi:10.1016/j.biocon.2011.11.003. DOI

Rejmánek M (2000) A must for biogeographers. Divers Distrib 6: 208–211. doi:10.1046/j.1472-4642.2000.00073-3.x. DOI

Smart SM, Thompson K, Marrs RH, Le Duc MG, Maskell LC et al. (2006) Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc Biol Sci 273: 2659–2665. doi:10.1098/rspb.2006.3630. PubMed: 17002952. PubMed DOI PMC

Duncan JR, Lockwood JL (2001) Spatial homogenization of aquatic fauna of Tennessee: extinction and invasion following land use change and habitat alteration. In: McKinney ML, Lockwood JL. Biotic homogenization. New York: Plenum Publishing House Publishers; pp. 245–258.

La Sorte FA, McKinney ML (2007) Compositional changes over space and time along an occurrence–abundance continuum: anthropogenic homogenization of the North American avifauna. J Biogeogr 34: 2159–2167. doi:10.1111/j.1365-2699.2007.01761.x. DOI

Blair RB, Launer AE (1997) Butterfly diversity and human land use: species assemblages along an urban gradient. Biol Conserv 80: 113–125. doi:10.1016/S0006-3207(96)00056-0. DOI

Cowie RH (2001) Decline and homogenization of Pacific faunas: the land snails of American Samoa. Biol Conserv 99: 207–222. doi:10.1016/S0006-3207(00)00181-6. DOI

Lydeard C, Cowie RH, Ponder WF, Bogan AE, Bouchet P et al. (2004) The global decline of nonmarine mollusks. BioScience 54: 321–330.

DAISIE (2009) Handbook of alien species in Europe. Dordrecht: Springer Verlag. 400pp.

Horsák M, Juřičková L, Kintrová K, Hájek O (2009) Patterns of land snail diversity over a gradient of habitat degradation: a comparison of three Czech cities. Biodivers Conserv 18: 3453–3466. doi:10.1007/s10531-009-9654-y. DOI

Lososová Z, Horsák M, Chytrý M, Čejka T, Danihelka J et al. (2011) Diversity of Central European urban biota: effects of human-made habitat types on plants and land snails. J Biogeogr 38: 1152–1163. doi:10.1111/j.1365-2699.2011.02475.x. DOI

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965–1978. doi:10.1002/joc.1276. DOI

Cameron RAD, Pokryszko B (2005) Estimating the species richness and composition of land mollusc communities: problems, consequences and practical advice. J Conchol 38: 529–548.

Horsák M, Juřičková L, Beran L, Čejka T, Dvořák L (2010) Annotated list of mollusc species recorded outdoors in the Czech and Slovak Republics. Malacologica Bohemoslovaca Suppl 1: 1–37 (in Czech)

Kerney MP, Cameron RDA, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Hamburg: Paul Parey Verlag. 384pp.

Welter-Schultes FW (2012) European non-marine molluscs, a guide for species identification. Göttingen: Planet Poster Editions. 679pp.

Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4: 379–391. doi:10.1046/j.1461-0248.2001.00230.x. DOI

Tichý L (2002) JUICE, software for vegetation classification. J Veg Sci 13: 451–453. doi:10.1111/j.1654-1103.2002.tb02069.x. DOI

Hardin JW, Hilbe JM (2003) Generalized estimating equations. Boca Raton: Chapman & Hall/CRC. 222pp.

Hojsgaard S, Halekoh U, Yan J (2006) The R package geepack for generalized estimating equations. J Stat Soft 15: 1–11.

Core R Team; (2012) R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; . Available: http://www.R-project.org/.

Rahel FJ (2000) Homogenization of fish faunas across the United States. Science 288: 854–856. doi:10.1126/science.288.5467.854. PubMed: 10797007. PubMed DOI

Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence–absence data. J Anim Ecol 72: 367–382. doi:10.1046/j.1365-2656.2003.00710.x. DOI

Lambdon PW, Pyšek P, Basnou C, Hejda M, Arianoutsou M et al. (2008) Alien flora of Europe: species diversity, temporal trends, geographical patterns and research needs. Preslia 80: 101–149.

Celesti-Grapow L, Blasi C (1998) A comparison of the urban flora of different phytoclimatic regions in Italy. Glob Ecol Biogeogr 7: 367–378. doi:10.1046/j.1466-822x.1998.00304.x. DOI

Nobis MP, Jaeger JAG, Zimmermann NE (2009) Neophyte species richness at the landscape scale under urban sprawl and climate warming. Divers Distrib 15: 928–939. doi:10.1111/j.1472-4642.2009.00610.x. DOI

Rollo CD (1991) Endogenous and exogenous regulation of activity in Deroceras reticulatum, a weather sensitive terrestrial slug. Malacologia 33: 199–220.

Horsák M, Cernohorsky N (2008) Mollusc diversity patterns in Central European fens: hotspots and conservation priorities. J Biogeogr 35: 1215–1225. doi:10.1111/j.1365-2699.2007.01856.x. DOI

Riddle WA (1983) Physiological ecology of snails and slugs. In: Russell-Hunter WD. The Mollusca. Volume 6: Ecology. New York: Academic Press; pp. 431–461.

Ložek V (1964) Quartärmollusken der Tschechoslowakei. Praha Nakladatelství Československé Akademie Věd: 374.

Meyer WM, Cowie RH (2010) Invasive temperate species are a threat to tropical island biodiversity. Biotropica 42: 732–738. doi:10.1111/j.1744-7429.2010.00629.x. DOI

Niemelä J, Kotze DJ, Venn S, Penev L, Stoyanov I et al. (2002) Carabid beetle assemblages (Coleoptera, Carabidae) across urban–rural gradients: an international comparison. Landsc Ecol 17: 387–401. doi:10.1023/A:1021270121630. DOI

McKinney ML (2002) Do human activities raise species richness? Contrasting patterns in United States plants and fishes. Glob Ecol Biogeogr 11: 343–348. doi:10.1046/j.1466-822X.2002.00293.x. DOI

Reichard SE (1997) Prevention of invasive plant introductions on national and local levels. In: Luken JO, Thieret JW. Assessment and management of plant invasions. New York: Springer Verlag; pp. 215–227.

Collins MD, Vazquez DP, Sanders NJ (2002) Species-area curves, homogenization and the loss of global diversity. Evol Ecol Res 4: 457–464.

Olden JD, Poff NL (2004) Ecological processes driving biotic homogenization: testing a mechanistic model using fish faunas. Ecology 85: 1867–1875. doi:10.1890/03-3131. DOI

La Sorte FA, McKinney ML, Pyšek P, Klotz S, Rapson GL et al. (2008) Distance decay of similarity among European urban floras: the impact of anthropogenic activities on beta diversity. Glob Ecol Biogeogr 17: 363–371. doi:10.1111/j.1466-8238.2007.00369.x. DOI

Hill MO, Roy DB, Thompson K (2002) Hemeroby, urbanity and ruderality: bioindicators of disturbance and human impact. J Appl Ecol 39: 708–720. doi:10.1046/j.1365-2664.2002.00746.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...