Enterohemorrhagic Escherichia coli as causes of hemolytic uremic syndrome in the Czech Republic
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
24040117
PubMed Central
PMC3765202
DOI
10.1371/journal.pone.0073927
PII: PONE-D-13-12425
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- enterohemoragická Escherichia coli klasifikace účinky léků genetika izolace a purifikace MeSH
- fenotyp MeSH
- fylogeneze MeSH
- genotyp MeSH
- hemolyticko-uremický syndrom diagnóza epidemiologie mikrobiologie MeSH
- kojenec MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- předškolní dítě MeSH
- roční období MeSH
- sérotypizace MeSH
- shiga toxin genetika MeSH
- virulence genetika MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- antibakteriální látky MeSH
- shiga toxin MeSH
BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC) cause diarrhea-associated hemolytic uremic syndrome (D+ HUS) worldwide, but no systematic study of EHEC as the causative agents of HUS was performed in the Czech Republic. We analyzed stools of all patients with D+ HUS in the Czech Republic between 1998 and 2012 for evidence of EHEC infection. We determined virulence profiles, phenotypes, antimicrobial susceptibilities and phylogeny of the EHEC isolates. METHODOLOGY/PRINCIPAL FINDINGS: Virulence loci were identified using PCR, phenotypes and antimicrobial susceptibilities were determined using standard procedures, and phylogeny was assessed using multilocus sequence typing. During the 15-year period, EHEC were isolated from stools of 39 (69.4%) of 56 patients. The strains belonged to serotypes [fliC types] O157:H7/NM[fliC(H7)] (50% of which were sorbitol-fermenting; SF), O26:H11/NM[fliC(H11)], O55:NM[fliC(H7)], O111:NM[fliC(H8)], O145:H28[fliC(H28)], O172:NM[fliC(H25)], and Orough:NM[fliC(H250]. O26:H11/NM[fliC(H11)] was the most common serotype associated with HUS (41% isolates). Five stx genotypes were identified, the most frequent being stx(2a) (71.1% isolates). Most strains contained EHEC-hlyA encoding EHEC hemolysin, and a subset (all SF O157:NM and one O157:H7) harbored cdt-V encoding cytolethal distending toxin. espPα encoding serine protease EspPα was found in EHEC O157:H7, O26:H11/NM, and O145:H28, whereas O172:NM and Orough:NM strains contained espPγ. All isolates contained eae encoding adhesin intimin, which belonged to subtypes β (O26), γ (O55, O145, O157), γ2/θ (O111), and ε (O172, Orough). Loci encoding other adhesins (efa1, lpfA(O26), lpfA(O157OI-141), lpfA(O157OI-154), iha) were usually associated with particular serotypes. Phylogenetic analysis demonstrated nine sequence types (STs) which correlated with serotypes. Of these, two STs (ST660 and ST1595) were not found in HUS-associated EHEC before. CONCLUSIONS/SIGNIFICANCE: EHEC strains, including O157:H7 and non-O157:H7, are frequent causes of D+ HUS in the Czech Republic. Identification of unusual EHEC serotypes/STs causing HUS calls for establishment of an European collection of HUS-associated EHEC, enabling to study properties and evolution of these important pathogens.
Zobrazit více v PubMed
Tarr PI, Gordon CA, Chandler WL (2005) Shiga toxin-producing Escherichia coli and the haemolytic uraemic syndrome. Lancet 365: 1073–1086. PubMed
Schmidt H, Geitz C, Tarr PI, Frosch M, Karch H (1999) Non-O157:H7 pathogenic Shiga toxin-producing Escherichia coli: phenotypic and genetic profiling of virulence traits and evidence for clonality. J Infect Dis 179: 115–123. PubMed
Mellmann A, Bielaszewska M, Köck R, Friedrich AW, Fruth A, et al. (2008) Analysis of collection of hemolytic uremic syndrome-associated enterohemorrhagic Escherichia coli . Emerg Infect Dis 14: 1287–1290. PubMed PMC
Espié E, Grimont F, Mariani-Kurkdjian P, Bouvet P, Haeghebaert S, et al. (2008) Surveillance of hemolytic uremic syndrome in children less than 15 years of age, a system to monitor O157 and non-O157 Shiga toxin-producing Escherichia coli infections in France, 1996–2006. Pediatr Infect Dis J 27: 595–601. PubMed
Käppeli U, Hächler H, Giezendanner N, Beutin L, Stephan R (2011) Human infections with non-O157 Shiga toxin-producing Escherichia coli, Switzerland, 2000–2009. Emerg Infect Dis 17: 180–185. PubMed PMC
Zieg J, Dusek J, Marejkova M, Limrova P, Blazek D, et al. (2012) Fatal case of diarrhea-associated hemolytic uremic syndrome with severe neurologic involvement. Pediatr Int 54: 166–167. PubMed
Bielaszewska M, Mellmann A, Bletz S, Zhang W, Köck R, et al. (2013) Enterohemorrhagic Escherichia coli O26:H11/H-: A new virulent clone emerges in Europe. Clin Infect Dis 56: 1373–1381. PubMed
Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, et al. (2005) Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192: 1422–1429. PubMed
Schimmer B, Nygard K, Eriksen HM, Lassen J, Lindstedt BA, et al. (2008) Outbreak of haemolytic uraemic syndrome in Norway caused by stx2-positive Escherichia coli O103:H25 traced to cured mutton sausages. BMC Infect Dis 8: 41 doi: 10.1186/1471-2334-8-41 PubMed DOI PMC
Bláhová K, Janda J, Kreisinger J, Matejková E, Sedivá A (2002) Long-term follow-up of Czech children with D+ hemolytic-uremic syndrome. Pediatr Nephrol 17: 400–403. PubMed
Rosales A, Hofer J, Zimmerhackl LB, Jungraithmayr TC, Riedl M, et al. (2012) Need for long-term follow-up in enterohemorrhagic Escherichia coli-associated hemolytic uremic syndrome due to late-emerging sequelae. Clin Infect Dis 54: 1413–1421. PubMed
Zoja C, Buelli S, Morigi M (2010) Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatr Nephrol 25: 2231–2240. PubMed
Betz J, Bielaszewska M, Thies A, Humpf HU, Dreisewerd K, et al. (2011) Shiga toxin glycosphingolipid receptors in microvascular and macrovascular endothelial cells: differential association with membrane lipid raft microdomains. J Lipid Res 52: 618–634. PubMed PMC
Betz J, Bauwens A, Kunsmann L, Bielaszewska M, Mormann M, et al. (2012) Uncommon membrane distribution of Shiga toxin glycosphingolipid receptors in toxin-sensitive human glomerular microvascular endothelial cells. Biol Chem 393: 133–147. PubMed
Friedrich AW, Bielaszewska M, Zhang W, Pulz M, Kuczius T, et al. (2002) Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. J Infect Dis 185: 74–84. PubMed
Scheutz F, Teel LD, Beutin L, Piérard D, Buvens G, et al. (2012) Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. J Clin Microbiol 50: 2951–2963. PubMed PMC
Ethelberg S, Olsen KE, Scheutz F, Jensen C, Schiellerup P, et al. (2004) Virulence factors for hemolytic uremic syndrome, Denmark. Emerg Infect Dis 10: 842–847. PubMed PMC
Prager R, Fruth A, Siewert U, Strutz U, Tschäpe H (2009) Escherichia coli encoding Shiga toxin 2f as an emerging human pathogen. Int J Med Microbiol 299: 343–353. PubMed
Prager R, Fruth A, Busch U, Tietze E (2011) Comparative analysis of virulence genes, genetic diversity, and phylogeny of Shiga toxin 2g and heat-stable enterotoxin STIa encoding Escherichia coli isolates from humans, animals, and environmental sources. Int J Med Microbiol 301: 181–191. PubMed
Rivas M, Miliwebsky E, Chinen I, Roldán CD, Balbi L, et al. (2006) Characterization and epidemiologic subtyping of Shiga toxin-producing Escherichia coli strains isolated from hemolytic uremic syndrome and diarrhea cases in Argentina. Foodborne Pathog Dis 3: 88–96. PubMed
Louise CB, Obrig TG (1995) Specific interaction of Escherichia coli O157:H7- derived Shiga-like toxin II with human renal endothelial cells. J Infec Dis 172: 1397–1401. PubMed
Bauwens A, Bielaszewska M, Kemper B, Langehanenberg P, von Bally G, et al. (2011) Differential cytotoxic actions of Shiga toxin 1 and Shiga toxin 2 on microvascular and macrovascular endothelial cells. Thromb Haemost 105: 515–528. PubMed
Banatvala N, Griffin PM, Greene KD, Barrett TJ, Bibb WF, et al. (2001) The United States national prospective hemolytic uremic syndrome study: microbiologic, serologic, clinical, and epidemiologic findings. J Infect Dis 183: 1063–1070. PubMed
Lynn RM, O’Brien SJ, Taylor CM, Adak GK, Chart H, et al. (2005) Childhood hemolytic uremic syndrome, United Kingdom and Ireland. Emerg Infect Dis 11: 590–596. PubMed PMC
Buvens G, Piérard D (2012) Virulence profiling and disease association of verocytotoxin-producing Escherichia coli O157 and non-O157 isolates in Belgium. Foodborne Pathog Dis 9: 530–535. PubMed
Tozzi E, Caprioli A, Minelli F, Gianviti A, De Petris L, et al. (2003) Shiga toxin–producing Escherichia coli infections associated with hemolytic uremic syndrome, Italy, 1988–2000. Emerg Infect Dis 9: 106–108. PubMed PMC
Chase-Topping ME, Rosser T, Allison LJ, Courcier E, Evans J, et al. (2012) Pathogenic potential to humans of bovine Escherichia coli O26, Scotland. Emerg Infect Dis 18: 439–448. PubMed PMC
Elliott EJ, Robins-Browne RM, O’Loughlin EV, Bennett-Wood V, Bourke J, et al. (2001) Nationwide study of haemolytic uraemic syndrome: clinical, microbiological, and epidemiological features. Arch Dis Child 85: 125–131. PubMed PMC
Paton AW, Paton JC (1998) Detection and characterization of Shiga toxigenic Escherichia coli by using multiplex PCR assays for stx 1, stx 2, eaeA, enterohemorrragic E. coli hlyA, rfb O111, and rfb O157 . J Clin Microbiol 36: 598–602. PubMed PMC
Perelle S, Dilasser F, Grout J, Fach P (2004) Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world´s most frequent clinical cases. Mol Cell Probes 18: 185–192. PubMed
D´Souza JM, Wang L, Reeves P (2002) Sequence of the Escherichia coli O26 O antigen gene cluster and identification of O26 specific genes. Gene 297: 123–127. PubMed
Guo H, Feng L, Tao J, Zhang C, Wang L (2004) Identification of Escherichia coli O172 O-antigen gene cluster and development of a serogroup-specific PCR assay. J Appl Microbiol 97: 181–190. PubMed
Schmidt H, Beutin L, Karch H (1995) Molecular analysis of the plasmid-encoded hemolysin of Escherichia coli O157:H7 strain EDL 933. Infect Immun 63: 1055–1061. PubMed PMC
Janka A, Bielaszewska M, Dobrindt U, Karch H (2002) Identification and distribution of the enterohemorrhagic Escherichia coli factor for adherence (efa1) gene in sorbitol-fermenting Escherichia coli O157: H-. Int J Med Microbiol 292: 207–214. PubMed
Janka A, Bielaszewska M, Dobrindt U, Greune L, Schmidt MA, et al. (2003) Cytolethal distending toxin gene cluster in enterohemorrhagic Escherichia coli O157:H- and O157: H7: characterization and evolutionary considerations. Infect Immun 71: 3634–3638. PubMed PMC
Brockmeyer J, Bielaszewska M, Fruth A, Bonn ML, Mellmann A, et al. (2007) Subtypes of the plasmid-encoded serine protease EspP in Shiga toxin-producing Escherichia coli: distribution, secretion, and proteolytic activity. Appl Environ Microbiol 73: 6351–6359. PubMed PMC
Bielaszewska M, Köck R, Friedrich AW, von Eiff C, Zimmerhackl LB, et al. (2007) Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm? PLoS One 2: e1024. PubMed PMC
Toma C, Martínez Espinosa E, Song T, Miliwebsky E, Chinen I, et al. (2004) Distribution of putative adhesins in different seropathotypes of Shiga toxin-producing Escherichia coli . J Clin Microbiol 42: 4937–4946. PubMed PMC
Zhang WL, Köhler B, Oswald E, Beutin L, Karch H, et al. (2002) Genetic diversity of intimin genes of attaching and effacing Escherichia coli strains. J Clin Microbiol 40: 4486–4492. PubMed PMC
Blanco M, Blanco JE, Mora A (2004) Serotypes, virulence genes, and intimin types of Shiga toxin (Verotoxin)-producing Escherichia coli isolates from cattle in Spain and identification of a new intimin variant gene (eae-ξ). J Clin Microbiol 42: 645–651. PubMed PMC
Bielaszewska M, Tarr PI, Karch H, Zhang W, Mathys W (2005) Phenotypic and molecular analysis of tellurite resistance among enterohemorrhagic Escherichia coli O157:H7 and sorbitol-fermenting O157:NM clinical isolates. J Clin Microbiol 43: 452–454. PubMed PMC
Friedrich AW, Köck R, Bielaszewska M, Zhang W, Karch H, et al. (2005) Distribution of the urease gene cluster and urease activity among enterohemorrhagic Escherichia coli O157 from humans. J Clin Microbiol 43: 546–550. PubMed PMC
Karmali MA, Mascarenhas M, Shen S, Ziebell K, Johnson S, et al. (2003) Association of genomic O island 122 of Escherichia coli EDL 933 with verocytotoxin-producing Escherichia coli seropathotypes that are linked to epidemic and/or serious disease. J Clin Microbiol 41: 4930–4940. PubMed PMC
EUCAST. EUCAST MIC and Zone diameter breakpoint tables. (2012) Available: http://www.eucast.org/antimicrobial_susceptibility_testing/breakpoints/.Accessed 22 October 2012.
EUCAST. Antimicrobial susceptibility testing EUCAST disk diffusion method. (2012) Available: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/Manual_v_2.1_EUCAST_Disk_Test.pdf.Accessed 22 October 2012.
Karch H, Schubert S, Zhang D, Zhang W, Schmidt H, et al. (1999) A genomic island, termed high-pathogenicity island, is present in certain non-O157 Shiga toxin-producing Escherichia coli clonal lineages. Infect Immun 67: 5994–6001. PubMed PMC
Karch H, Wiss R, Gloning H, Emmrich P, Aleksić S, et al. (1990) Hemolytic-uremic syndrome in infants due to verotoxin-producing Escherichia coli . Dtsch Med Wochenschr 115: 489–495. PubMed
Orth D, Grif K, Zimmerhackl LB, Würzner R (2009) Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157 in Austria. Wien Klin Wochenschr 121: 108–112. PubMed
Eklund M, Bielaszewska M, Nakari UM, Karch H, Siitonen A (2006) Molecular and phenotypic profiling of sorbitol-fermenting Escherichia coli O157:H- human isolates from Finland. Clin Microbiol Infect 12: 634–641. PubMed
Brandal LT, Løbersli I, Stavnes TL, Wester AL, Lindstedt BA (2012) First report of the Shiga toxin 1 gene in sorbitol-fermenting Escherichia coli O157:H-. J Clin Microbiol 50: 1825–1826. PubMed PMC
Pollock KG, Locking ME, Beattie TJ, Maxwell H, Ramage I, et al. (2010) Sorbitol-fermenting Escherichia coli O157, Scotland. Emerg Infect Dis 16: 881–882. PubMed PMC
Frank C, Werber D, Cramer JP, Askar M, Faber M, et al. (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany - Preliminary report. N Engl J Med 19: 1771–1780. PubMed
Bielaszewska M, Mellmann A, Zhang W, Köck R, Fruth A, et al. (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11: 671–676. PubMed
Marejková M, Roháčová H, Reisingerová M, Petráš P (2012) An imported case of bloody diarrhea in the Czech Republic caused by a hybrid enteroaggregative hemorrhagic Escherichia coli (EAHEC) O104:H4 strain associated with the large outbreak in Germany, May 2011. Folia Microbiol 57: 85–89. PubMed
Ammon A, Peterson LR, Karch H (1999) A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of E. coli O157:H–. J Infect. Dis 179: 1274–1277. PubMed
Alpers K, Werber D, Frank C, Koch J, Friedrich AW, et al. (2009) Sorbitol-fermenting enterohaemorrhagic Escherichia coli O157:H- causes another outbreak of haemolytic uraemic syndrome in children. Epidemiol Infect 137: 389–395. PubMed
Rosser T, Dransfield T, Allison L, Hanson M, Holden N, et al. (2008) Pathogenic potential of emergent sorbitol-fermenting Escherichia coli O157:NM. Infect Immun 76: 5598–5607. PubMed PMC
Haugum K, Lindstedt BA, Løbersli I, Kapperud G, Brandal LT (2012) Identification of the anti-terminator qO111:H- gene in Norwegian sorbitol-fermenting Escherichia coli O157:NM. FEMS Microbiol Lett 329: 102–110. PubMed
Friedrich AW, Lu S, Bielaszewska M, Prager R, Bruns P, et al. (2006) Cytolethal distending toxin in Escherichia coli O157:H7: spectrum of conservation, structure, and endothelial toxicity. J Clin Microbiol 44: 1844–1846. PubMed PMC
Aldick T, Bielaszewska M, Zhang W, Brockmeyer J, Schmidt H, et al. (2007) Hemolysin from Shiga toxin-negative Escherichia coli O26 strains injures microvascular endothelium. Microbes Infect 9: 282–290. PubMed
Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL (2005) Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11: 603–609. PubMed PMC
Feng P, Lampel KA, Karch H, Whittam TS (1998) Genotypic and phenotypic changes in the emergence of Escherichia coli O157:H7. J Infect Dis 177: 1750–1753. PubMed
Leopold SR, Magrini V, Holt NJ, Shaikh N, Mardis ER, et al. (2009) A precise reconstruction of the emergence and constrained radiations of Escherichia coli O157 portrayed by backbone concatenomic analysis. Proc Natl Acad Sci U S A 106: 8713–8718. PubMed PMC
Bono JL, Smith TP, Keen JE, Harhay GP, McDaneld TG, et al. (2012) Phylogeny of Shiga toxin-producing Escherichia coli O157 isolated from cattle and clinically ill humans. Mol Biol Evol 29: 2047–2062. PubMed PMC
Jenke C, Harmsen D, Weniger T, Rothganger J, Hyytia-Trees E, et al. (2010) Phylogenetic analysis of enterohemorrhagic Escherichia coli O157, Germany, 1987–2008. Emerg Infect Dis 16: 610–616. PubMed PMC
Jenke C, Leopold SR, Weniger T, Rothgänger J, Harmsen D, et al. (2012) Identification of intermediate in evolutionary model of enterohemorrhagic Escherichia coli O157. Emerg Infect Dis 18: 582–588. PubMed PMC
Izumiya H, Pei Y, Terajima J, Ohnishi M, Hayashi T, et al. (2010) New system for multilocus variable-number tandem-repeat analysis of the enterohemorrhagic Escherichia coli strains belonging to three major serogroups: O157, O26, and O111. Microbiol Immuno 54: 569–577. PubMed
Jenke C, Lindstedt BA, Harmsen D, Karch H, Brandal LT, et al. (2011) Comparison of multilocus variable-number tandem-repeat analysis and multilocus sequence typing for differentiation of hemolytic-uremic syndrome-associated Escherichia coli (HUSEC) collection strains. J Clin Microbiol 49: 3644–3646. PubMed PMC
Bielaszewska M, Middendorf B, Tarr PI, Zhang W, Prager R, et al. (2011) Chromosomal instability in enterohaemorrhagic Escherichia coli O157:H7: impact on adherence, tellurite resistance and colony phenotype. Mol Microbiol 79: 1024–1044. PubMed PMC
Eklund M, Scheutz F, Siitonen A (2001) Clinical isolates of non-O157 Shiga toxin-producing Escherichia coli: serotypes, virulence characteristics, and molecular profiles of strains of the same serotype. J Clin Microbiol 39: 2829–2834. PubMed PMC
Buvens G, Gheldre Y, Dediste A, Moreau AI, Mascart G, et al. (2011) Incidence and virulence determinants of verocytotoxin-producing Escherichia coli infections in the Brussels-capital region, Belgium, in 2008–2010. J Clin Microbiol 50: 1336–1345. PubMed PMC
Folster JP, Pecic G, Taylor E, Whichard J (2011) Characterization of isolates from an outbreak of multidrug-resistant, Shiga toxin-producing Escherichia coli O145 in the United States. Antimicrob Agents Chemother 55: 5955–5956. PubMed PMC
Buvens G, Bogaerts P, Glupczynski Y, Lauwers S, Piérard D (2010) Antimicrobial resistance testing of verocytotoxin-producing Escherichia coli and first description of TEM-52 extended-spectrum β-lactamase in serogroup O26. Antimicrob Agents Chemother 54: 4907–4909. PubMed PMC
Bielaszewska M, Idelevich EA, Zhang W, Bauwens A, Schaumburg F, et al. (2012) Effects of antibiotics on Shiga toxin 2 production and bacteriophage induction by epidemic Escherichia coli O104:H4 strain. Antimicrob Agents Chemother 56: 3277–3282. PubMed PMC
van der Donk CF, van de Bovenkamp JH, De Brauwer EI, De Mol P, Feldhoff KH, et al. (2012) Antimicrobial resistance and spread of multi drug resistant Escherichia coli isolates collected from nine urology services in the Euregion Meuse-Rhine. PLoS One 7(10): e47707. PubMed PMC
Hrabák J, Empel J, Bergerová T, Fajfrlík K, Urbášková P, et al. (2009) International clones of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamases in a Czech hospital. J Clin Microbiol 47: 3353–3357. PubMed PMC
Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, et al. (2007) Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-beta-lactamase-producing Enterobacteriaceae: importance of inadequate initial antimicrobial treatment. Antimicrob Agents Chemother 51: 1987–1994. PubMed PMC
Alexa P, Konstantinova L, Zajacova-Sramkova Z (2011) Faecal shedding of verotoxigenic Escherichia coli in cattle in the Czech Republic. Veterinarni Medicina 56: 149–155.
Čížek A, Dolejská M, Novotná R, Haas D, Vyskočil M (2007) Survey of Shiga toxigenic Escherichia coli O157 and drug-resistant coliform bacteria from in-line milk filters on dairy farms in the Czech Republic. J Appl Microbiol 104: 852–860. PubMed
Bielaszewska M, Janda J, Bláhová K, Minaříková H, Jílková E, et al. (1997) Human Escherichia coli O157:H7 infection associated with consumption of unpasteurised goat´s milk. Epidemiol Infect 119: 299–305. PubMed PMC
Bielaszewska M, Schmidt H, Liesegang A, Prager R, Rabsch W, et al. (2000) Cattle can be a reservoir of sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H- strains and a source of human diseases. J Clin Microbiol 38: 3470–3473. PubMed PMC