• This record comes from PubMed

Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43

. 2013 Dec ; 20 (12) : 1443-9. [epub] 20131117

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
089701 Wellcome Trust - United Kingdom
MC_U105185858 Medical Research Council - United Kingdom

TDP-43 encodes an alternative-splicing regulator with tandem RNA-recognition motifs (RRMs). The protein regulates cystic fibrosis transmembrane regulator (CFTR) exon 9 splicing through binding to long UG-rich RNA sequences and is found in cytoplasmic inclusions of several neurodegenerative diseases. We solved the solution structure of the TDP-43 RRMs in complex with UG-rich RNA. Ten nucleotides are bound by both RRMs, and six are recognized sequence specifically. Among these, a central G interacts with both RRMs and stabilizes a new tandem RRM arrangement. Mutations that eliminate recognition of this key nucleotide or crucial inter-RRM interactions disrupt RNA binding and TDP-43-dependent splicing regulation. In contrast, point mutations that affect base-specific recognition in either RRM have weaker effects. Our findings reveal not only how TDP-43 recognizes UG repeats but also how RNA binding-dependent inter-RRM interactions are crucial for TDP-43 function.

See more in PubMed

PLoS One. 2011 Mar 11;6(3):e17808 PubMed

FEBS Lett. 2006 Feb 20;580(5):1339-44 PubMed

Nucleic Acids Res. 2005 Oct 27;33(18):6000-10 PubMed

Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11 PubMed

Genes Dev. 2012 Aug 1;26(15):1679-84 PubMed

Nat Neurosci. 2011 Apr;14(4):459-68 PubMed

J Neurochem. 2009 Nov;111(4):1051-61 PubMed

EMBO J. 2001 Apr 2;20(7):1774-84 PubMed

J Biomol NMR. 1996 Dec;8(4):477-86 PubMed

Nucleic Acids Res. 2009 Jul;37(12):4116-26 PubMed

FEBS Lett. 1994 Aug 15;350(1):87-90 PubMed

Nat Struct Mol Biol. 2010 Jul;17(7):853-61 PubMed

Mol Cell Neurosci. 2011 Jul;47(3):167-80 PubMed

J Biomol NMR. 2002 Nov;24(3):171-89 PubMed

EMBO J. 2006 Jan 11;25(1):163-73 PubMed

J Comput Chem. 2005 Dec;26(16):1668-88 PubMed

EMBO J. 2010 Jan 6;29(1):209-21 PubMed

J Neurochem. 2008 May;105(3):797-806 PubMed

Adv Exp Med Biol. 2012;992:121-44 PubMed

Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3785-9 PubMed

Curr Opin Cell Biol. 1999 Jun;11(3):363-71 PubMed

J Biol Chem. 2001 Sep 28;276(39):36337-43 PubMed

Chembiochem. 2003 Oct 6;4(10):936-62 PubMed

J Mol Graph. 1996 Feb;14(1):51-5, 29-32 PubMed

RNA Biol. 2010 Jul-Aug;7(4):420-9 PubMed

Nucleic Acids Res. 2010 Nov;38(20):e188 PubMed

EMBO J. 2011 Jan 19;30(2):277-88 PubMed

RNA. 2004 May;10(5):889-93 PubMed

Nat Neurosci. 2011 Apr;14(4):452-8 PubMed

J Biomol NMR. 2004 Jan;28(1):59-67 PubMed

Cell. 1999 Sep 17;98(6):835-45 PubMed

J Biol Chem. 2008 Oct 24;283(43):28852-9 PubMed

Methods. 2001 Nov;25(3):316-32 PubMed

Nat Struct Biol. 2001 Feb;8(2):141-5 PubMed

Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3347-52 PubMed

Curr Opin Struct Biol. 2008 Jun;18(3):290-8 PubMed

Hum Mol Genet. 2011 Apr 1;20(7):1400-10 PubMed

J Mol Biol. 1998 Jul 31;280(5):879-96 PubMed

Nature. 2011 Jul 13;475(7356):408-11 PubMed

EMBO J. 2000 Dec 15;19(24):6870-81 PubMed

J Mol Biol. 2005 May 6;348(3):575-88 PubMed

Nature. 1999 Apr 15;398(6728):579-85 PubMed

EMBO J. 2006 Jul 12;25(13):3167-78 PubMed

Mol Cell Biol. 2011 Mar;31(5):1098-108 PubMed

RNA. 2010 Mar;16(3):647-53 PubMed

Science. 2006 Oct 6;314(5796):130-3 PubMed

Nucleic Acids Res. 2009 Apr;37(6):1799-808 PubMed

J Mol Biol. 2002 May 24;319(1):209-27 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...