Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
089701
Wellcome Trust - United Kingdom
MC_U105185858
Medical Research Council - United Kingdom
PubMed
24240615
DOI
10.1038/nsmb.2698
PII: nsmb.2698
Knihovny.cz E-zdroje
- MeSH
- DNA vazebné proteiny chemie metabolismus fyziologie MeSH
- lidé MeSH
- molekulární modely MeSH
- molekulární sekvence - údaje MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- protein CFTR genetika metabolismus MeSH
- proteiny vázající RNA chemie metabolismus fyziologie MeSH
- sekvence aminokyselin MeSH
- sestřih RNA fyziologie MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zastoupení bazí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- CFTR protein, human MeSH Prohlížeč
- DNA vazebné proteiny MeSH
- protein CFTR MeSH
- proteiny vázající RNA MeSH
TDP-43 encodes an alternative-splicing regulator with tandem RNA-recognition motifs (RRMs). The protein regulates cystic fibrosis transmembrane regulator (CFTR) exon 9 splicing through binding to long UG-rich RNA sequences and is found in cytoplasmic inclusions of several neurodegenerative diseases. We solved the solution structure of the TDP-43 RRMs in complex with UG-rich RNA. Ten nucleotides are bound by both RRMs, and six are recognized sequence specifically. Among these, a central G interacts with both RRMs and stabilizes a new tandem RRM arrangement. Mutations that eliminate recognition of this key nucleotide or crucial inter-RRM interactions disrupt RNA binding and TDP-43-dependent splicing regulation. In contrast, point mutations that affect base-specific recognition in either RRM have weaker effects. Our findings reveal not only how TDP-43 recognizes UG repeats but also how RNA binding-dependent inter-RRM interactions are crucial for TDP-43 function.
Zobrazit více v PubMed
PLoS One. 2011 Mar 11;6(3):e17808 PubMed
FEBS Lett. 2006 Feb 20;580(5):1339-44 PubMed
Nucleic Acids Res. 2005 Oct 27;33(18):6000-10 PubMed
Biochem Biophys Res Commun. 2006 Dec 22;351(3):602-11 PubMed
Genes Dev. 2012 Aug 1;26(15):1679-84 PubMed
Nat Neurosci. 2011 Apr;14(4):459-68 PubMed
J Neurochem. 2009 Nov;111(4):1051-61 PubMed
EMBO J. 2001 Apr 2;20(7):1774-84 PubMed
J Biomol NMR. 1996 Dec;8(4):477-86 PubMed
Nucleic Acids Res. 2009 Jul;37(12):4116-26 PubMed
FEBS Lett. 1994 Aug 15;350(1):87-90 PubMed
Nat Struct Mol Biol. 2010 Jul;17(7):853-61 PubMed
Mol Cell Neurosci. 2011 Jul;47(3):167-80 PubMed
J Biomol NMR. 2002 Nov;24(3):171-89 PubMed
EMBO J. 2006 Jan 11;25(1):163-73 PubMed
J Comput Chem. 2005 Dec;26(16):1668-88 PubMed
EMBO J. 2010 Jan 6;29(1):209-21 PubMed
J Neurochem. 2008 May;105(3):797-806 PubMed
Adv Exp Med Biol. 2012;992:121-44 PubMed
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3785-9 PubMed
Curr Opin Cell Biol. 1999 Jun;11(3):363-71 PubMed
J Biol Chem. 2001 Sep 28;276(39):36337-43 PubMed
Chembiochem. 2003 Oct 6;4(10):936-62 PubMed
J Mol Graph. 1996 Feb;14(1):51-5, 29-32 PubMed
RNA Biol. 2010 Jul-Aug;7(4):420-9 PubMed
Nucleic Acids Res. 2010 Nov;38(20):e188 PubMed
EMBO J. 2011 Jan 19;30(2):277-88 PubMed
RNA. 2004 May;10(5):889-93 PubMed
Nat Neurosci. 2011 Apr;14(4):452-8 PubMed
J Biomol NMR. 2004 Jan;28(1):59-67 PubMed
Cell. 1999 Sep 17;98(6):835-45 PubMed
J Biol Chem. 2008 Oct 24;283(43):28852-9 PubMed
Methods. 2001 Nov;25(3):316-32 PubMed
Nat Struct Biol. 2001 Feb;8(2):141-5 PubMed
Proc Natl Acad Sci U S A. 2012 Feb 28;109(9):3347-52 PubMed
Curr Opin Struct Biol. 2008 Jun;18(3):290-8 PubMed
Hum Mol Genet. 2011 Apr 1;20(7):1400-10 PubMed
J Mol Biol. 1998 Jul 31;280(5):879-96 PubMed
Nature. 2011 Jul 13;475(7356):408-11 PubMed
EMBO J. 2000 Dec 15;19(24):6870-81 PubMed
J Mol Biol. 2005 May 6;348(3):575-88 PubMed
Nature. 1999 Apr 15;398(6728):579-85 PubMed
EMBO J. 2006 Jul 12;25(13):3167-78 PubMed
Mol Cell Biol. 2011 Mar;31(5):1098-108 PubMed
RNA. 2010 Mar;16(3):647-53 PubMed
Science. 2006 Oct 6;314(5796):130-3 PubMed
Nucleic Acids Res. 2009 Apr;37(6):1799-808 PubMed
J Mol Biol. 2002 May 24;319(1):209-27 PubMed
hnRNP A1 induces aberrant CFTR exon 9 splicing via a newly discovered ESS element
A model of human neural networks reveals NPTX2 pathology in ALS and FTLD
PDB
4BS2