Back from the brink: the Holocene history of the Carpathian barbel Barbus carpathicus

. 2013 ; 8 (12) : e82464. [epub] 20131212

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24349291

As a result of specific adaptations and habitat preferences strongly rheophilic fish species may show high levels of endemism. Many temperate rheophilic fish species were subjected to a series of range contractions during the Pleistocene, and then successfully expanded during the Holocene, colonising previously abandoned areas. The Carpathian barbel (Barbus carpathicus Kotlík, Tsigenopoulos, Ráb et Berrebi 2002) occurs in the montane streams in three basins of the main Central European rivers in the northern part of the Carpathian range. We used genetic variation within 3 mitochondrial and 9 microsatellite loci to determine a pattern of postglacial expansion in B. carpathicus. We found that overall genetic variation within the species is relatively low. Estimate of time to the most recent common ancestor (tMRCA) of mitochondrial sequences falls within the Holocene. The highest levels of genetic variation found in upper reaches of the Tisa river in the Danube basin suggest that glacial refugia were located in the south-eastern part of the species range. Our data suggest that the species crossed different watersheds at least six times as three genetically distinct groups (probably established in different expansion episodes) were found in northern part of the species range. Clines of genetic variation were observed in both the Danube and Vistula basins, which probably resulted from subsequent bottlenecks while colonizing successive habitats (south eastern populations) or due to the admixture of genetically diverse individuals to a previously uniform population (Vistula basin). Therefore, B. carpathicus underwent both demographic breakdowns and expansions during the Holocene, showing its distribution and demography are sensitive to environmental change. Our findings are important in the light of the current human-induced habitats alterations.

Zobrazit více v PubMed

Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405: 907–913. doi:10.1038/35016000. PubMed: 10879524. PubMed DOI

Janko K, Lecointre G, DeVries A, Couloux A, Cruaud C et al. (2007) Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes? – Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity. BMC Evol Biol 7: 220. doi:10.1186/1471-2148-7-220. PubMed: 17997847. PubMed DOI PMC

Strona G, Galli P, Montano S, Seveso D, Fattorini S (2012) Global-Scale Relationships between Colonization Ability and Range Size in Marine and Freshwater. Fish - PLOS ONE 7: e49465. doi:10.1371/journal.pone.0049465. PubMed DOI PMC

Schmitt T (2007) Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Front Zool 4: 11. doi:10.1186/1742-9994-4-11. PubMed: 17439649. PubMed DOI PMC

Konopiński MK, Amirowicz A, Kukuła K (2007) Probable direction of the postglacial colonization of rivers on northern slopes of the Carpathian Ridge by Barbus carpathicus (Teleostei: Cyprinidae) evidenced by cline of genetic variation. J Fish Biol 70: 406–415. doi:10.1111/j.1095-8649.2007.01479.x. DOI

Kotlík P, Berrebi P (2002) Genetic subdivision and biogeography of the Danubian rheophilic barb Barbus petenyi inferred from phylogenetic analysis of mitochondrial DNA variation. Mol Phylogenet Evol 24: 10–18. doi:10.1016/S1055-7903(02)00264-6. PubMed: 12128024. PubMed DOI

Kotlík P, Tsigenopoulos CS, Rab P, Berrebi P (2002) Two new Barbus species from the Danube River basin, with redescription of B-petenyi (Teleostei : Cyprinidae). Folia Zool 51: 227–240.

Rembiszewski M, Rolik H (1975) Cyclostomata et Pisces. Catalogus faunae Poloniae, XXXVIII Warszawa: PWN; . p. 249

Kottelat M, Freyhof J (2007) Handbook of Freshwater European Fishes. Berlin: Kottelat, Cornol, Switzerland, And Freyhof P 646.

Bernatchez L, Wilson CC (1998) Comparative phylogeography of nearctic and palearctic fishes. Mol Ecol 7: 431–452. doi:10.1046/j.1365-294x.1998.00319.x. DOI

Wong BBM, Keogh JS, McGlashan DJ (2004) Current and historical patterns of drainage connectivity in eastern Australia inferred from population genetic structuring in a widespread freshwater fish Pseudomugil signifer (Pseudomugilidae). Mol Ecol 13: 391–401. doi:10.1046/j.1365-294X.2003.02085.x. PubMed: 14717894. PubMed DOI

Wofford JEB, Gresswell RE, Banks MA (2005) Influence of barriers to movement on within-watershed genetic variation of coastal cutthroat trout. Ecol Appl 15: 628–637. doi:10.1890/04-0095. DOI

Hasselman DJ, Ricard D, Bentzen P (2013) Genetic diversity and differentiation in a wide ranging anadromous fish, American shad (Alosa sapidissima), is correlated with latitude. Mol Ecol 22: 1558–1573. doi:10.1111/mec.12197. PubMed: 23379260. PubMed DOI

Xiao WH, Zhang YP, Liu HZ (2001) Molecular systematics of Xenocyprinae (Teleostei : Cyprinidae): Taxonomy, biogeography, and coevolution of a special group restricted in east. Asia - Mol Phylogenet Evol 18: 163–173. doi:10.1006/mpev.2000.0879. PubMed DOI

Machordom A, Doadrio I (2001) Evidence of a cenozoic Betic-Kabilian connection based on freshwater fish phylogeography (Luciobarbus, Cyprinidae). Mol Phylogenet Evol 18: 252–263. doi:10.1006/mpev.2000.0876. PubMed: 11161760. PubMed DOI

Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient Single-Step, One Tube Purification of Pcr Products for Direct Sequencing. Nucleic Acids Res 22: 4354–4355. doi:10.1093/nar/22.20.4354. PubMed: 7937169. PubMed DOI PMC

Kotlík P, Marková S, Choleva L, Bogutskaya NG, Ekmekçi FG et al. (2008) Divergence with gene flow between Ponto-Caspian refugia in an anadromous cyprinid Rutilus frisii revealed by multiple gene phylogeography. Mol Ecol 17: 1076–1088. doi:10.1111/j.1365-294X.2007.03638.x. PubMed: 18261049. PubMed DOI

Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.

Chenuil A, Galtier N, Berrebi P (1999) A test of the hypothesis of an autopolyploid vs. allopolyploid origin for a tetraploid lineage: application to the genus Barbus (Cyprinidae). Heredity 82: 373–380. doi:10.1038/sj.hdy.6884890. PubMed: 10383655. PubMed DOI

Tong J, Wang Z, Yu X, Wu Q, Chu KH (2002) Cross-species amplification in silver carp and bighead carp with microsatellite primers of common carp. Mol Ecol Notes 2: 245–247. doi:10.1046/j.1471-8278.2002.00214.x. DOI

Turner TF, Dowling TE, Broughton RE, Gold JR (2004) Variable microsatellite markers amplify across divergent lineages of cyprinid fishes (subfamily Leusicinae). Conserv Genet 5: 279–281. doi:10.1023/B:COGE.0000029998.11426.ab. DOI

Vyskočilová M, Šimková A, Martin J-F (2007) Isolation and characterization of microsatellites in Leuciscus cephalus (Cypriniformes, Cyprinidae) and cross-species amplification within the family Cyprinidae. Mol Ecol Notes 7: 1150–1154. doi:10.1111/j.1471-8286.2007.01813.x. DOI

Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452. doi:10.1093/bioinformatics/btp187. PubMed: 19346325. PubMed DOI

Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9: 1657–1659. doi:10.1046/j.1365-294x.2000.01020.x. PubMed: 11050560. PubMed DOI

Dieringer D, Schlötterer C (2003) MICROSATELLITE ANALYSER (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3: 167–169. doi:10.1046/j.1471-8286.2003.00351.x. DOI

Goudet J (1995) FSTAT (Version 1.2): A computer program to calculate F-statistics. J Hered 86: 485–486.

Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10: 564–567. doi:10.1111/j.1755-0998.2010.02847.x. PubMed: 21565059. PubMed DOI

Slatkin M, Hudson RR (1991) Pairwise Comparisons of Mitochondrial-Dna Sequences in Stable and Exponentially Growing Populations. Genetics 129: 555–562. PubMed: 1743491. PubMed PMC

Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13: 853–864. doi:10.1046/j.1365-294X.2003.02004.x. PubMed: 15012760. PubMed DOI

Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: 1969–1973 doi:10.1093/molbev/mss075. PubMed DOI PMC

Burridge CP, Craw D, Fletcher D, Waters JM (2008) Geological dates and molecular rates: Fish DNA sheds light on time dependency. Mol Biol Evol 25: 624–633. doi:10.1093/molbev/msm271. PubMed: 18281273. PubMed DOI

Weir B, Cockerham C (1984) Estimating F-Statistics for the Analysis of Population-Structure. Evolution 38: 1358–1370. doi:10.2307/2408641. PubMed DOI

Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996) GENETIX 405, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier (France) Available: http://kimura.univ-montp2.fr/genetix/. Accessed 26 July 2013

Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155: 945–959. PubMed: 10835412. PubMed PMC

Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9: 1322–1332. doi:10.1111/j.1755-0998.2009.02591.x. PubMed: 21564903. PubMed DOI PMC

Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14: 2611–2620. doi:10.1111/j.1365-294X.2005.02553.x. PubMed: 15969739. PubMed DOI

Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4: 359–361. doi:10.1007/s12686-011-9548-7. DOI

Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23: 1801–1806. doi:10.1093/bioinformatics/btm233. PubMed: 17485429. PubMed DOI

Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7: 747–756. doi:10.1111/j.1471-8286.2007.01769.x. DOI

François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174: 805–816. doi:10.1534/genetics.106.059923. PubMed: 16888334. PubMed DOI PMC

Saitoh K, Sado T, Mayden RL, Hanzawa N, Nakamura K et al. (2006) Mitogenomic evolution and interrelationships of the cypriniformes (Actinopterygii : Ostariophysi): The first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences. J Mol Evol 63: 826–841. doi:10.1007/s00239-005-0293-y. PubMed: 17086453. PubMed DOI

Urdea P, Reuther A (2009) Some new data concerning the Quaternary glaciation in the Romanian Carpathians. Geogr Pannonica 13: 41–52.

Kotlík P, Deffontaine V, Mascheretti S, Zima J, Michaux JR et al. (2006) A northern glacial refugium for bank voles (Clethrionomys glareolus). Proc Natl Acad Sci U S A 103: 14860–14864. doi:10.1073/pnas.0603237103. PubMed: 17001012. PubMed DOI PMC

Schmitt T, Varga Z (2012) Extra-Mediterranean refugia: The rule and not the exception? Front Zool 9. doi:10.1186/1742-9994-9-22. PubMed DOI PMC

Riffel M, Schreiber A (1995) Coarse-grained population structure in Central European sculpin (Cottus gobio L): Secondary contact or ongoing genetic drift? J Zool Syst Evol Res 33: 173–184.

Slechtová V, Bohlen J, Freyhof J, Persat H, Delmastro GB (2004) The Alps as barrier to dispersal in cold-adapted freshwater fishes? Phylogeographic history and taxonomic status of the bullhead in the Adriatic freshwater drainage. Mol Phylogenet Evol 33: 225–239. doi:10.1016/j.ympev.2004.05.005. PubMed: 15324851. PubMed DOI

Hänfling B, Brandl R (1998) Genetic differentiation of the bullhead Cottus gobio L. across watersheds in Central Europe: Evidence for two taxa. Heredity 80: 110–117. doi:10.1046/j.1365-2540.1998.00279.x. DOI

Hocutt C (1979) Drainage Evolution and Fish Dispersal in the Central Appalachians - Summary. Geol Soc Am Bull 90: 129–130. Available online at: doi:10.1130/0016-7606(1979)90<129:DEAFDI>2.0.CO;2 DOI

Houston DD, Shiozawa DK, Riddle BR (2010) Phylogenetic relationships of the western North American cyprinid genus Richardsonius, with an overview of phylogeographic structure. Mol Phylogenet Evol 55: 259–273. doi:10.1016/j.ympev.2009.10.017. PubMed: 19874904. PubMed DOI

Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7: 453–464. doi:10.1046/j.1365-294x.1998.00289.x. PubMed: 9628000. PubMed DOI

Excoffier L, Ray N (2008) Surfing during population expansions promotes genetic revolutions and structuration. Trends Ecol Evol 23: 347–351. doi:10.1016/j.tree.2008.04.004. PubMed: 18502536. PubMed DOI

Zobrazit více v PubMed

GENBANK
KF819397, KF819398, KF819399, KF819400, KF819401, KF819402, KF819403, KF819404, KF819405, KF826494, KF826495, KF826496, KF826497, KF826498, KF826499, KF826500, KF826501, KF826502, KF826503, KF826504, KF826505, KF826506, KF826507

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...