Did glacial advances during the Pleistocene influence differently the demographic histories of benthic and pelagic Antarctic shelf fishes?--Inferences from intraspecific mitochondrial and nuclear DNA sequence diversity

. 2007 Nov 12 ; 7 () : 220. [epub] 20071112

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17997847

Grantová podpora
27306C2005 NIEHS NIH HHS - United States

BACKGROUND: Circum-Antarctic waters harbour a rare example of a marine species flock - the Notothenioid fish, most species of which are restricted to the continental shelf. It remains an open question as to how they survived Pleistocene climatic fluctuations characterised by repeated advances of continental glaciers as far as the shelf break that probably resulted in a loss of habitat for benthic organisms. Pelagic ecosystems, on the other hand, might have flourished during glacial maxima due to the northward expansion of Antarctic polar waters. In order to better understand the role of ecological traits in Quaternary climatic fluctuations, we performed demographic analyses of populations of four fish species from the tribe Trematominae, including both fully benthic and pelagic species using the mitochondrial cytochrome b gene and an intron from the nuclear S7 gene. RESULTS: Nuclear and cytoplasmic markers showed differences in the rate and time of population expansions as well as the likely population structure. Neutrality tests suggest that such discordance comes from different coalescence dynamics of each marker, rather than from selective pressure. Demographic analyses based on intraspecific DNA diversity suggest a recent population expansion in both benthic species, dated by the cyt b locus to the last glacial cycle, whereas the population structure of pelagic feeders either did not deviate from a constant-size model or indicated that the onset of the major population expansion of these species by far predated those of the benthic species. Similar patterns were apparent even when comparing previously published data on other Southern Ocean organisms, but we observed considerable heterogeneity within both groups with regard to the onset of major demographic events and rates. CONCLUSION: Our data suggest benthic and pelagic species reacted differently to the Pleistocene ice-sheet expansions that probably significantly reduced the suitable habitat for benthic species. However, the asynchronous timing of major demographic events observed in different species within both "ecological guilds", imply that the species examined here may have different population and evolutionary histories, and that more species should be analysed in order to more precisely assess the role of life history in the response of organisms to climatic changes.

Zobrazit více v PubMed

Kock KH. Antarctic Fish and Fisheries. Cambridge University Press, Cambridge; 1992.

Clarke A, Barnes DKA, Hodgson DA. How isolated is Antarctica? Trends Ecol Evol. 2005;20:1–3. doi: 10.1016/j.tree.2004.10.004. PubMed DOI

Antezana T. Plankton of southern Chilean fjords: trends and linkages. Sci Mar. 1999;63:69–80.

Hodgson DA, Vyverman W, Tyler PA. Diatoms of meromictic lakes adjacent to the Gordon River, and of the Gordon River estuary in south-west Tasmania. Biblio Diatomol. 1997;35:1–172.

Bargelloni L, Marcato S, Zane L, Patarnello T. Mitochondrial phylogeny of notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol. 2000;49:114–129. doi: 10.1080/10635150050207429. PubMed DOI

Patarnello T, Bargelloni L, Varotto V, Battaglia B. Krill evolution and the Antarctic Ocean currents: evidence of vicariant speciation as inferred by molecular data. Mar Biol. 1996;126:603–608. doi: 10.1007/BF00351327. DOI

Held C. Phylogeny and Biogeography of Serolid Isopods (Crustacea, Isopoda, Serolidae) and the Use of Ribosomal Expansion Segments in Molecular Systematics. Mol Phyl Evol. 2000;15:165–178. doi: 10.1006/mpev.1999.0739. PubMed DOI

Page TJ, Linse K. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae) Polar Biol. 2002;25:818–826.

Lorza AN, Held C. A preliminary molecular and morphological phylogeny of the Antarctic Epimeriidae and Iphimediidae (Crustacea, Amphipoda) Mol Phyl Evol. 2004;31:4–15. doi: 10.1016/j.ympev.2003.07.019. PubMed DOI

Hambrey MJ, Barrett P. Cenozoic sedimentary and climaticrecord, Ross Sea region, Antarctica. In: Kennett JP, Warnke DA, editor. The Antarctic paleoenvironment: a perspective on globalchange Part two. Antarctic research series. 60. American geophysical union. Wahington; 1993. pp. 91–124.

Thatje S, Hillenbrand C-D, Larter R. On the origin of Antarctic marine benthic community structure. Trends Ecol Evol. 2005;20:534–540. doi: 10.1016/j.tree.2005.07.010. PubMed DOI

Eastman JT, Clarke A. Radiations of Antarctic and non-Antarctic fish. In: di Prisco G, Pisano E, Clarke A, editor. Fishes of Antarctica: A Biological Overview. Milan: Springer-Verlag Italia; 1998. pp. 3–26.

Anderson RF, Chase Z, Fleisher MQ, Sachs J. The Southern Ocean's biological pump during the Last Glacial Maximum. Deep-Sea Research Part II Topical Studies in Oceanography. 2002;49:1909–1938. doi: 10.1016/S0967-0645(02)00018-8. DOI

Charles CD, Froelich PN, Zibello MA, Mortlock RA, Morley JJ. Biogenic opal in Southern Ocean sediments over the last 450 000 years: implications for surface water chemistry and circulation. Paleoceanography. 1991;6:697–728.

Hayward TL. Pacific ocean climate change: atmospheric forcing, ocean circulation and ecosystem response. Trends Ecol Evol. 1997;12:150–154. doi: 10.1016/S0169-5347(97)01002-1. PubMed DOI

Zane L, Marcato S, Bargelloni L, Bortolotto E, Papetti C, Simonato M, Varotto V, Patarnello T. Demographic history and population structure of the Antarctic silverfish. Pleuragramma antarcticum Mol Ecol. 2006;15:4499–4511. doi: 10.1111/j.1365-294X.2006.03105.x. PubMed DOI

Ramos-Onsins SE, Rozas J. Statistical Properties of New Neutrality Tests Against Population Growth. Mol Biol Evol. 2002;19:2092–2100. PubMed

Kuhner MK, Yamato J, Felsenstein J. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics. 1998;149:429–434. PubMed PMC

Galtier N, Depaulis F, Barton NH. Detecting bottlenecks and selective sweeps from DNA sequence polymorphism. Genetics. 2000;155:981–987. PubMed PMC

Stevens MI, Hogg ID. Long-term isolation and recent range expansion from glacial refugia revealed for the endemic springtail Gomphiocephalus hodgsoni from Victoria Land, Antarctica. Mol Ecol. 2003;12:2357–2369. doi: 10.1046/j.1365-294X.2003.01907.x. PubMed DOI

Roeder AD, Marshall RK, Mitchelson AJ, Visagathilagar T, Ritchie PA, Love DR, Pakai TJ, Partlan HCMC, Murray ND, Robinson NA, Kerry KR, Lambert DM. Gene flow on the ice: genetic differentiation among Adélie penguin colonies around Antarctica. Mol Ecol. 2001;10:1645–1656. doi: 10.1046/j.0962-1083.2001.01312.x. PubMed DOI

Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Battaglia B, Patarnello T. Molecular evidence for genetic subdivision of Antarctic krill (Euphausia superba Dana) populations. Proc R Soc Lond B. 1998;265:2387–2391. doi: 10.1098/rspb.1998.0588. PubMed DOI PMC

Eastman JT, McCune AR. Fishes on the Antarctic continental shelf: evolution of a marine species flock? Journal of Fish Biology. 2000;57:84–102.

Chen L, DeVries AL, Cheng C-HC. Convergent evolution of antifreeze glycoproteins in Antarctic notothenioid fish and Arctic cod. Proceedings of the National Academy of Sciences of the USA. 1997;94:3817–3822. doi: 10.1073/pnas.94.8.3817. PubMed DOI PMC

Bargelloni L, Ritchie PA, Battaglia B, Lambert DM, Meyer A. Molecular Evolution at Subzero Temperatures: Mitochondrial and Nuclear Phylogenies of Fishes from Antarctica (Suborder Notothenioidei), and the Evolution of Antifreeze Glycopeptides. Mol Biol Evol. 1994;11:854–86. PubMed

Near JT. Estimating divergence times of notothenioid fishes using a fossilcalibrated molecular clock. Antarctic Science. 2004;16:37–44. doi: 10.1017/S0954102004001798. DOI

Chen W-J, Bonillo C, Lecointre G. Phylogeny of the Channichthyidae (Notothenioidei, Teleostei) based on two mitochondrial genes. In: di Prisco G, Pisano E, Clarke A, editor. Fishes of Antarctica: A Biological Overview. Milan: Springer-Verlag Italia; 1998. pp. 287–298.

Derome N, Chen WJ, Dettai A, Bonillo C, Lecointre G. Phylogeny of Antarctic dragonfishes (Bathydraconidae, Notothenioidei, Teleostei) and related families based on their anatomy and two mitochondrial genes. Mol Phylogenet Evol. 2002;24:139–152. doi: 10.1016/S1055-7903(02)00223-3. PubMed DOI

Ritchie PA, Bargelloni L, Meyer A, Taylor JA, Macdonald JA, Lambert DM. Mitochondrial phylogeny of trematomid fishes (Nototheniidae, Perciformes) and the evolution of Antarctic fish. Mol Phylogenet Evol. 1996;5:383–390. doi: 10.1006/mpev.1996.0033. PubMed DOI

Near TJ, Pesavento JJ, Cheng CC. Mitochondrial DNA, morphology, and the phylogenetic relationships of Antarctic ice fishes (Notothenioidei:Channichthyidae) Mol Phylogenet Evol. 2003;28:87–98. doi: 10.1016/S1055-7903(03)00029-0. PubMed DOI

Bargelloni L, Lecointre G. Four years in notothenioid systematics: A molecular perspective. In: di Prisco G, Pisano E, Clarke A, editor. Fishes of Antarctica: A Biological Overview. Milan: Springer-Verlag Italia; 1998. pp. 259–273.

Eastman JT. Antarctic Fish Biology: Evolution in a Unique Environment. San Diego: Academic Press; 1993.

DeWitt HH, Heemstra PC, Gon O. Nototheniidae. In: Gon O, Heemstra PC, editor. Fishes of the Southern Ocean. CTP Book Printers, Cape; 1990.

Ekau W. Morphological adaptations and mode of life in High Antarctic fish. In: di Prisco G, Pisano E, Clarke A, editor. Fishes of Antarctica, A biological Overview. Springer-Verlag, Milano; 1991. pp. 23–39.

Chov S, Hazama K. Universal PCR primers for S7 ribosomal protein gene introns in fish. Mol Ecol. 1998;7:1247–1263. doi: 10.1046/j.1365-294x.1998.00406.x. PubMed DOI

Wall JD. Estimating ancestral population sizes and divergence times. Genetics. 2003;163:395–404. PubMed PMC

Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics. 1985;111:147–164. PubMed PMC

Stephens M, Smith NJ, Donnelly P. A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics. 2001;68:978–989. doi: 10.1086/319501. PubMed DOI PMC

Templeton AR, Crandall KA, Sing CF. A cladistic analysis of phenotypic association with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics. 1992;132:619–633. PubMed PMC

Clement M, Posada D, Crandall KA. TCS: a computer program to estimate gene genealogies. Mol Ecol. 2000;9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x. PubMed DOI

Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–818. doi: 10.1093/bioinformatics/14.9.817. PubMed DOI

Hasegawa M, Kishino H, Yano T. Dating of the human-ape splitting by molecular clock of mitochondrial DNA. J Mol Evol. 1985;21:160–174. doi: 10.1007/BF02101694. PubMed DOI

Kosakovsky Pond SL, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies. Bioinformatics. 2005;21:676–679. doi: 10.1093/bioinformatics/bti079. PubMed DOI

Swofford DL. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.0. Sinauer Associates, Sunderland, Massachusetts; 1999.

Schneider S, Roessli D, Excoffier L. Arlequin: A software for population genetics data analysis. Ver 2.0. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva; 2000.

Hudson RR, Kreitman M, Aguadé M. A test of neutral molecular evolution based on nucleotide data. Genetics. 1987;116:153–159. PubMed PMC

Hilton H, Kliman RM, Hey J. Using hitchhiking genes to study adaptation and divergence during speciation within the Drosophila melanogaster complex. Evolution. 1994;48:1900–1913. doi: 10.2307/2410516. PubMed DOI

Sanchez S, Dettaï A, Bonillo C, Ozouf-Costaz C, Detrich B, Lecointre G. Molecular and morphological Phylogenies of the Nototheniidae, with on taxonomic focus on the Trematominae. Polar Biology. 2006.

McDonald JH, Kreitman M. Adaptive protein evolu tion at the Adh Locus in Drosophila. Nature. 1991;351:652–654. doi: 10.1038/351652a0. PubMed DOI

Rozas J, Rozas R. DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics. 1999;15:174–175. doi: 10.1093/bioinformatics/15.2.174. PubMed DOI

Tajima F. Statistical Method for Testing the Neutral Mutation Hypothesis by DNA Polymorphism. Genetics. 1989;123:585–595. PubMed PMC

Wakeley J, Hey J. Estimating ancestral population parameters. Genetics. 1997;145:847–855. PubMed PMC

Hey J, Wakeley J. A coalescent estimator of the population recombination rate. Genetics. 1997;145:833–846. PubMed PMC

Fu YX. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics. 1997;147:915–925. PubMed PMC

Rogers AR, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol. 1992;9:552–569. PubMed

Rogers A. Genetic evidence for a Pleistocene population explosion. Evolution. 1995;49:608–615. doi: 10.2307/2410314. PubMed DOI

Schneider S, Excoffier L. Estimation of demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites:application to human mitochondrial DNA. Genetics. 1999;152:1079–1089. PubMed PMC

Saillard J, Forster P, Lynnerup N, Bandelt HJ, Norby S. mtDNA variation among Greenland Eskimos: The edge of the Beringian expansion. American Journal of Human Genetics. 2000;67:718–726. doi: 10.1086/303038. PubMed DOI PMC

Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276. doi: 10.1016/0040-5809(75)90020-9. PubMed DOI

Kuhner MK. LAMARC: estimating population genetic parameter from molecular data. In: Salemi M, Vandamme A-M, editor. The Phylogenetic Handbook; a practical approach to DNA and protein phylogeny. Cambridge University Press; 2003.

Lessa EP, Cook JA, Patton JL. Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences, USA. 2003;100:10031–10034. doi: 10.1073/pnas.1730921100. PubMed DOI PMC

Excoffier L, Smouse P, Quattro J. Analysis of mole cular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–491. PubMed PMC

Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–120. doi: 10.1007/BF01731581. PubMed DOI

Guo SW, Thompson EA. Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics. 1992;48:361–372. doi: 10.2307/2532296. PubMed DOI

Bernardi G, Goswami U. Molecular evidence for cryptic species among the Antarctic fish Trematomus bernacchii and Trematomus hansoni. Antarctic Science. 1997;9:381–385.

Castella V, Ruedi M, Excoffier L. Contrasted patterns of mitochondrial and nuclear structure among nursery colonies of the bat Myotis myotis. J Evol Biol. 2001;14:708–720. doi: 10.1046/j.1420-9101.2001.00331.x. DOI

Wen B, Li H, Lu D, Song X, Zhang F, He Y, Li F, Gao Y, Mao X, Zhang L, Qian J, Tan J, Jin J, Huang W, Deka R, Su B, Chakraborty R, Jin L. Genetic evidence supports demic diffusion of Han culture. Nature. 2004;431:302–305. doi: 10.1038/nature02878. PubMed DOI

Shaw GP, Arkhipin AI, Al-Khairula H. Genetic structuring of Patagonian toothfish populations inthe Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Molecular Ecology. 2004;13:3293–3303. doi: 10.1111/j.1365-294X.2004.02327.x. PubMed DOI

Seddon JM, Santucci F, Reeve NJ, Hewitt GM. DNA footprints of European hedgehogs,Erinaceus europaeus and E. concolor: Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology. 2001;10:2187–2198. doi: 10.1046/j.0962-1083.2001.01357.x. PubMed DOI

Berggren KT, Ellegren H, Hewitt GM, Seddon JM. Understanding the phylogeographic patterns of European hedgehogs,Erinaceus concolor and E. europaeus using the MHC. Heredity. 2005;95:84–90. doi: 10.1038/sj.hdy.6800694. PubMed DOI

Monsen KJ, Blouin MS. Genetic structure in a montane ranid frog: restricted gene flow and nuclear-mitochondrial discordance. Molecular Ecology. 2003;12:3275–3286. doi: 10.1046/j.1365-294X.2003.02001.x. PubMed DOI

Ludwig A, Congiu L, Pitra C, Fickel J, Gessner J, Fontana F, Patarnello T, Zane L. Nonconcordant evolutionary history of maternal and paternal lineages in Adriatic sturgeon. Molecular Ecology. 2003;12:3253–3264. doi: 10.1046/j.1365-294X.2003.01999.x. PubMed DOI

Bensch S, Irwin DE, Irwin JH, Kvist L, Akesson S. Conflicting patterns of mitochondrial and nuclear DNA diversity in Phylloscopus warblers. Molecular Ecology. 2006;15:161–171. doi: 10.1111/j.1365-294X.2005.02766.x. PubMed DOI

Patarnello T, Marcato S, Zane L, varotto V, Bargelloni L. Phylogeography of the Chionodraco genus (Perciformes, Channichthydae)in the Southern Ocean. Mol Phylogenet Evol. 2003;28:420–429. doi: 10.1016/S1055-7903(03)00124-6. PubMed DOI

Licht KJ, Jennings AE, Andrews JT, Williams KM. Chronology of late Wisconsin ice retreat from the western Ross Sea, Antarctica. Geology. 1996;24:223–226. doi: 10.1130/0091-7613(1996)024<0223:COLWIR>2.3.CO;2. DOI

Domacke W, Jacobson EA, Shipp S, Anderson JB. Late Pleistocene-Holocene retreat of the West Antarctic ice-sheet system in the Ross Sea: Part 1 – geophysical results. Geol Soc Am Bull. 1999;111:1486–1516. doi: 10.1130/0016-7606(1999)111<1486:LPHROT>2.3.CO;2. DOI

Dayton PK, Oliver JS. Antarctic soft-bottom benthos in oligotrophic and eutrophic environments. Science. 1977;197:55–58. doi: 10.1126/science.197.4298.55. PubMed DOI

Kojima S, Segawa R, Hayashi I. Genetic differentiation among populations of the Japanese turban shell Turbo (Batillus) cornutus corresponding to warm currents. Ma Ecol Prog Ser. 1997;150:149–155. doi: 10.3354/meps150149. DOI

Stepien CA. Phylogeographical Structure of the Dover Sole Microstomus Pacificus: the Larval Retention Hypothesis and Genetic Divergence Along the Deep Continental Slope of the Northeastern Pacific Ocean. Mol Ecol. 1999;8:923–939. doi: 10.1046/j.1365-294x.1999.00643.x. PubMed DOI

Hohenlohe PA. Limits to gene flow in marine animals with planktonic larvae: models of Littorina species around Point Con-ception, California. Biol J Linn Soc. 2004;82:169–187. doi: 10.1111/j.1095-8312.2004.00318.x. DOI

Ometto L, Glinka S, De Lorenzo D, Stephan W. Inferring the Effects of Demography and Selection on Drosophila melanogaster Populations from a Chromosome-Wide Scan of DNA Variation. Mol Biol Evol. 2005;22:2119–2130. doi: 10.1093/molbev/msi207. PubMed DOI

Harpending HC, Batzer MA, Gurven M, Jorde JB, Rogers AR, Sherry ST. Genetic traces of ancient demography. Proc Natl Acad Sci USA. 1998;95:1961–1967. doi: 10.1073/pnas.95.4.1961. PubMed DOI PMC

Grant WS, Bowen BW. Shallow population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of Heredity. 1998;89:415–426. doi: 10.1093/jhered/89.5.415. DOI

Avise JC. Phylogeography. Harvard Univ Press, Cambridge; 2000.

Lecomte FL, Grant WS, Dodson JJ, Rodriguez-Sanchez R, Bowen BW. Living with uncertainty: genetic imprints of climate shifts in East Pacific anchovy(Engraulis mordax) and sardine (Sardinops sagax) Mol Evol. 2004;13:2169–2182. doi: 10.1111/j.1365-294X.2004.02229.x. PubMed DOI

Zardoya R, Castilho R, Grande C. Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol. 2004;13:1785–1798. doi: 10.1111/j.1365-294X.2004.02198.x. PubMed DOI

Vinas J, Bremer JA, Pla C. Phylogeography of the Atlantic bonito (Sarda sarda) in the northern Mediterranean:the combined effects of historical vicariance, population expansion, secondary invasion, and isolation by distance. Mol Phylogenet Evol. 2004;33:32–42. doi: 10.1016/j.ympev.2004.04.009. PubMed DOI

Carlsson J, Jan RMC, Pindaro D-J, Carlsson JLM, Boles SB, Gold JR, Graves JE. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Mol Ecol. 2004;13:3345–3356. doi: 10.1111/j.1365-294X.2004.02336.x. PubMed DOI

Ely B, Viñas J, Bremer JRA, Black D, Lucas L, Covello K, Labrie AV, Thelen E. Consequences of the historical demography on the global population structure of two highly migratory cosmopolitan marine fishes: the yellowfin tuna (Thunnus albacare s) and the skipjack tuna (Katsuwonus pelamis) BMC Evolutionary Biology. 2004;5:19. doi: 10.1186/1471-2148-5-19. PubMed DOI PMC

Wares JP, Cunningham CW. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution. 2001;55:2455–2469. PubMed

Kaustuv R, Jablonski D, Valentine JW. Climate change, species range limits and body size in marine bivalves. Ecology Letters. 2001;4:366. doi: 10.1046/j.1461-0248.2001.00236.x. DOI

Fauvelot C, Bernardi G, Planes S. Reductions in the mitochondrial diversity of corale reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change. Evolution. 2003;57:1571–1583. PubMed

Hickerson MJ, Cunningham CW. Contrasting quaternary histories in ecologically divergent sister pair of low-dispersing intertidal fish (Xiphister) revealed by multilocus DNA analyses. Evolution. 2005;59:344–360. PubMed

Anderson JB, Shipp SS, Lowe AL, Smith Wellner J, Mosola AB. The Antarctic ice sheet during the last glacial maximum and its subsequent retreat history: a review. Quat Sci Rev. 2002;22:49–70. doi: 10.1016/S0277-3791(01)00083-X. DOI

Bargelloni L, Zane L, Derome N, Lecointre G, Patarlello T. Molecular zoogeography of Antarctic euphausiids and notothenioids: from species phylogenies to intraspecific patterns of genetic variation. Antarctic Science. 2000;12:259–268.

Nelson JS. Fishes of the World. John Wiley and Sons, Hoboken, New Jersey; 2006.

Near T, Pesavento J, Cheng CH. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16SrRNA. Mol Phylogenet Evol. 2004;32:881–891. doi: 10.1016/j.ympev.2004.01.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...