Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: state-of-the-art and key issues
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24359647
DOI
10.1366/13-07288
Knihovny.cz E-zdroje
- MeSH
- blízká infračervená spektroskopie metody normy MeSH
- kalibrace MeSH
- metoda nejmenších čtverců MeSH
- půda chemie MeSH
- spektrofotometrie infračervená metody normy MeSH
- support vector machine MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- půda MeSH
Visible near-infrared (Vis-NIR) reflection spectroscopy and mid-infrared (mid-IR) reflection spectroscopy are cost- and time-effective and environmentally friendly techniques that could be alternatives to conventional soil analysis methods. Successful determination of spectrally active soil components, including soil organic matter (SOM), depends on the selection of suitable pretreatment and multivariate calibration techniques. The objective of the present review is to critically examine the suitability of Vis-NIR (350-2500 nm) and mid-IR (4000-400 cm(-1)) spectroscopy as a tool for SOM quantity and quality determination. Particular attention is paid to different pretreatment and calibration procedures and methods, and their ability to predict SOM content from Vis-NIR and mid-IR data is discussed. We then review the most recent research using spectroscopy in different calibration scales (local, regional, or global). Finally, accuracy and robustness, as well as uncertainty in Vis-NIR and mid-IR spectroscopy, are considered. We conclude that spectroscopy, especially the mid-IR technique in association with Savitzky-Golay smoothing and derivatization and the least squares support vector machine (LS-SVM) algorithm, can be useful in determining SOM quantity and quality. Future research conducted for the standardization of protocols and soil conditions will allow more accurate and reliable results on a global and international scale.
Citace poskytuje Crossref.org
vis-NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil