Modeling and Assessing the Spatial and Vertical Distributions of Potentially Toxic Elements in Soil and How the Concentrations Differ
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000845
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
34437499
PubMed Central
PMC8402386
DOI
10.3390/toxics9080181
PII: toxics9080181
Knihovny.cz E-zdroje
- Klíčová slova
- GIS-kriging, contamination factor, heavy metals, pollution load index, positive matrix factorization,
- Publikační typ
- časopisecké články MeSH
A healthy soil is a healthy ecosystem because humans, animals, plants, and water highly depend upon it. Soil pollution by potentially toxic elements (PTEs) is a serious concern for humankind. The study is aimed at (i) assessing the concentrations of PTEs in soils under a long-term heavily industrialized region for coal and textiles, (ii) modeling and mapping the spatial and vertical distributions of PTEs using a GIS-based ordinary kriging technique, and (iii) identifying the possible sources of these PTEs in the Jizerské Mountains (Jizera Mts.) using a positive matrix factorization (PMF) model. Four hundred and forty-two (442) soil samples were analyzed by applying the aqua regia method. To assess the PTE contents, the level of pollution, and the distribution pattern in soil, the contamination factor (CF) and the pollution load index load (PLI) were applied. ArcGIS-based ordinary kriging interpolation was used for the spatial analysis of PTEs. The results of the analysis revealed that the variation in the coefficient (CV) of PTEs in the organic soil was highest in Cr (96.36%), followed by Cu (54.94%) and Pb (49.40%). On the other hand, the mineral soil had Cu (96.88%), Cr (66.70%), and Pb (64.48%) as the highest in CV. The PTEs in both the organic soil and the mineral soil revealed a high heterogeneous variability. Though the study area lies within the "Black Triangle", which is a historic industrial site in Central Europe, this result did not show a substantial influence of the contamination of PTEs in the area. In spite of the rate of pollution in this area being very low based on the findings, there may be a need for intermittent assessment of the soil. This helps to curtail any excessive accumulation and escalation in future. The results may serve as baseline information for pollution assessment. It might support policy-developers in sustainable farming and forestry for the health of an ecosystem towards food security, forest safety, as well as animal and human welfare.
Zobrazit více v PubMed
Alloway B.J. Micronutrient Deficiencies in Global Food Production. Springer; Heidelberg, Germany: 2008.
Eriksson J., Dahlin S.A., Sohlenius G., Söderström M., Öborn I. Spatial patterns of essential trace element concentrations in Swedish soils and crops. Geoderma Reg. 2017;10:163–174. doi: 10.1016/j.geodrs.2017.07.001. DOI
Agyeman P.C., Ahado S.K., Kingsley J., Kebonye N.M., Biney J.K.M., Borůvka L., Vasat R., Kocarek M. Source apportionment, contamination levels, and spatial prediction of potentially toxic elements in selected soils of the Czech Republic. Environ. Geochem. Health. 2020;43:601–620. doi: 10.1007/s10653-020-00743-8. PubMed DOI
Barker B.J., Clausen J.L., Douglas T.L., Bednar A.J., Griggs C.S., Martin W.A. Environmental impact of metals resulting from military training activities: A review. Chemosphere. 2021;265:129110. doi: 10.1016/j.chemosphere.2020.129110. PubMed DOI
Borůvka L., Vašát R., Němeček K., Novotný R., Šrámek V., Vacek O., Pavlů L., Fadrhonsová V., Drábek O. Application of regression-kriging and sequential Gaussian simulation for the delineation of forest areas potentially suitable for liming in the Jizera Mountains region, Czech Republic. Geoderma Reg. 2020;21:e00286. doi: 10.1016/j.geodrs.2020.e00286. DOI
Chen L., Lowenthal D.H., Watson J.G., Koracin D., Kumar N., Knipping E.M., Wheeler N., Craig K., Reid S. Toward effective source apportionment using positive matrix factorization: Experiments with simulated PM2.5 data. J. Air Waste Manag. Assoc. 2010;60:43–54. doi: 10.3155/1047-3289.60.1.43. PubMed DOI
Chien C.S., Wang H., Chen Y., Wang M., Liu C. Removal of heavy metals from contaminated paddy soils using chemical reductants coupled with dissolved organic carbon solutions. J. Hazard. Mater. 2021;403:123549. doi: 10.1016/j.jhazmat.2020.123549. PubMed DOI
Ding Q., Cheng G., Wang Y., Zhuang D. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions. Sci. Total Environ. 2017;578:577–585. doi: 10.1016/j.scitotenv.2016.11.001. PubMed DOI
Gerdol R., Bragazza L. Effects of altitude on element accumulation in alpine moss. Chemosphere. 2020;64:810–816. doi: 10.1016/j.chemosphere.2005.10.053. PubMed DOI
Kabata-Pendias A. Trace Elements in Soils and Plants. 4th ed. CRC Press Taylor & Francis Group; New York, NY, USA: 2011.
Liu X., Shi H., Bai Z., Zhou W., Liu K., Wang M., He Y. Heavy metal concentrations of soils near the large opencast coal mine pits in China. Chemosphere. 2020;244:125360. doi: 10.1016/j.chemosphere.2019.125360. PubMed DOI
Marcantonio R.A., Field S.P., Sesay P.B., Lamberti G.A. Identifying human health risks from precious metal mining in Sierra Leone. Reg. Environ. Chang. 2021;21:1–12. doi: 10.1007/s10113-020-01731-5. DOI
Pavlů L., Drábek O., Stejskalová Š., Tejnecký V., Hradilová M., Nikodem A., Borůvka L. Distribution of aluminium fractions in acid forest soils: Influence of vegetation changes. iForest Biogeosci. For. 2018;11:721–727. doi: 10.3832/ifor2498-011. DOI
Peli M., Bostick B.C., Barontini S., Lucchini R.G., Ranzi R. Profiles and species of Mn, Fe and trace metals in soils near a ferromanganese plant in Bagnolo Mella (Brescia, IT) Sci. Total Environ. 2021;755:143123. doi: 10.1016/j.scitotenv.2020.143123. PubMed DOI
Salvador-Blanes S., Cornu S., Bourennane H., King D. Controls of the spatial variability of Cr concentration in topsoils of a central French landscape. Geoderma. 2006;132:143–157. doi: 10.1016/j.geoderma.2005.05.003. DOI
Sungur A., Kavdir Y., Özcan H., İlay R., Soylak M. Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. Catena. 2021;197:104995. doi: 10.1016/j.catena.2020.104995. DOI
Kalkhajeh Y.K., Huang B., Hu W., Ma C., Gao H., Thompson M.L., Hansen H.C.B. Environmental soil quality and vegetable safety under current greenhouse vegetable production management in China. Agric. Ecosyst. Environ. 2021;307:107230. doi: 10.1016/j.agee.2020.107230. DOI
Tian H., Zhang C., Qi S., Kong X., Yue X. Concentration and Spatial Distribution of Potentially Toxic Elements in Surface Soil of a Peak-Cluster Depression, Babao Town, Yunnan Province, China. Int. J. Environ. Res. Public Health. 2021;18:3122. doi: 10.3390/ijerph18063122. PubMed DOI PMC
Shar S., Reith F., Ball A.S., Shahsavar E. Long-term Impact of Gold and Platinum on Microbial Diversity in Australian Soils. Microb. Ecol. 2021;81:977–989. doi: 10.1007/s00248-020-01663-x. PubMed DOI
Matys Grygar T., Nováková T., Bábek O., Elznicová J., Vadinová N. Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. Sci. Total Environ. 2013;452–453:233–245. doi: 10.1016/j.scitotenv.2013.02.085. PubMed DOI
Kváčová M., Ash C., Borůvka L., Pavlů L., Nikodem A., Němeček K., Tejnecký V., Drábek O. Contents of Potentially Toxic Elements in Forest Soils of the Jizera Mountains Region. Environ. Model. Assess. 2015;20:183–195. doi: 10.1007/s10666-014-9425-3. DOI
Demková L., Jezný T., Bobuľská L. Assessment of soil heavy metal pollution in a former mining area before and after the end of mining activities. Soil Water Res. 2017;12:229–236. doi: 10.17221/107/2016-SWR. DOI
Kabala C., Galka B., Jezierski P. Assessment and monitoring of soil and plant contamination with trace elements around Europe’s largest copper ore tailings impoundment. Sci. Total Environ. 2020;738:139918. doi: 10.1016/j.scitotenv.2020.139918. PubMed DOI
Juhos K., Czigány S., Madarász B., Ladányi M. Interpretation of soil quality indicators for land suitability assessment using multivariate approach for Central European arable soils. Ecol. Indic. 2019;99:261–272. doi: 10.1016/j.ecolind.2018.11.063. DOI
Ahmadi M., Akhbarizadeh R., Haghighifard N.J., Barzegar G., Jorfi S. Geochemical determination and pollution assessment of heavy metals in agricultural soils of south western of Iran. J. Environ. Health Sci. Eng. 2019;17:657–669. doi: 10.1007/s40201-019-00379-6. PubMed DOI PMC
Hoaghia M.A., Levei E.A., Cadar O., Senila M., Hognogi G.G. Assessment of metal contamination and ecological risk in urban soils situated near a metallurgical complex. Environ. Eng. Manag. J. 2017;16:1623–1630. doi: 10.30638/eemj.2017.175. DOI
Alloway B. Heavy Metals in Soils. Chapman and Hall; London, UK: 1995.
Nwaogu C., Ogbuagu D.H., Abrakasa S., Olawoyin M.A., Pavlů V. Assessment of the impacts of municipal solid waste dumps on soils and plants. Chem. Ecol. 2017;33:589–606. doi: 10.1080/02757540.2017.1337101. DOI
Mondal S., Singh G. Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ. Geochem. Health. 2021;43:2081–2103. doi: 10.1007/s10653-020-00785-y. PubMed DOI
Luo X.S., Yu S., Zhu Y.G., Li X.D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012;421–422:17–30. doi: 10.1016/j.scitotenv.2011.04.020. PubMed DOI
Bhuiyan M.A.H., Bodrud-Doza M., Rakib M.A., Saha B.B., Didar-Ul Islam S.D. Appraisal of pollution scenario, sources and public health risk of harmful metals in mine water of Barapukuria coal mine industry in Bangladesh. Environ. Sci. Pollut. Res. 2021;28:22105–22122. doi: 10.1007/s11356-020-11999-z. PubMed DOI
Simionov I.A., Cristea D.S., Petrea S.M., Mogodan A., Nicoara M., Plavan G., Baltag E.S., Jijie R., Strungaru S.A. Preliminary investigation of lower Danube pollution caused by potentially toxic metals. Chemosphere. 2021;264:128496. doi: 10.1016/j.chemosphere.2020.128496. PubMed DOI
Tamilmani A., Venkatesan G. Assessment of trace metals and its pollution load indicators in water and sediments between Upper and Grand Anicuts in the Cauvery. Int. J. Environ. Sci. Technol. 2021 doi: 10.1007/s13762-020-03034-y. DOI
Komárek M., Ettler V., Chrastný V., Mihaljevic M. Lead isotopes in environmental sciences: A review. Environ. Int. 2008;34:562–577. doi: 10.1016/j.envint.2007.10.005. PubMed DOI
Brüggemann J., Dörfner H.H., Hecht H., Kumpulainen J.T., Westermair T. Status of Trace Elements in Staple Foods from Germany 1990–1994. In: Kumpulainen J.T., editor. Trace Elements, Natural Antioxidants and Contaminants in European Foods and Diets. Volume 49. FAO; Rome, Italy: 1996. p. 5.
Nicholson F.A., Smith S.R., Alloway B.J., Carlton-Smith C., Chambers B.J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003;311:205–219. doi: 10.1016/S0048-9697(03)00139-6. PubMed DOI
Staniszewski P., Bilek M., Szwerc W., Tomusiak R., Osiak P., Kocjan R., Moskalik T. The effect of tree age, daily sap volume and date of sap collection on the content of minerals and heavy metals in silver birch (Betula pendula Roth) tree sap. PLoS ONE. 2020;15:e0244435. doi: 10.1371/journal.pone.0244435. PubMed DOI PMC
Ren H.Y., Zhuang D.F., Singh A., Pan J.J., Qiu D.S., Shi R.H. Estimation of as and Cu contamination in agricultural soils around a mining area by reflectance spectroscopy: A case study. Pedosphere. 2009;19:719–726. doi: 10.1016/S1002-0160(09)60167-3. DOI
Gholizadeh A., Boruvka L., Saberioon M., Vasat R. Visible, near-infrared, and mid-infrared spectroscopy applications for soil assessment with emphasis on soil organic matter content and quality: State-of-the-art and key issues. Appl. Spectrosc. 2013;67:1349–1362. doi: 10.1366/13-07288. PubMed DOI
Gholizadeh A., Boruvka L., Vasat R., Saberioon M., Klement A., Kratina J., Tejnecky V., Drabek O. Estimation of potentially toxic elements contamination in anthropogenic soils on a Brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS ONE. 2015;10:e0117457. doi: 10.1371/journal.pone.0117457. PubMed DOI PMC
Gholizadeh A., Saberioon M., Ben-Dor E., Rossel R.A.V., Boruvka L. Modelling potentially toxic elements in forest soils with viseNIR spectra and learning algorithms. Environ. Pollut. 2020;267:115574. doi: 10.1016/j.envpol.2020.115574. PubMed DOI
Sun X., Zhang L., Lv J. Spatial assessment models to evaluate human health risk associated to soil potentially toxic elements. Environ. Pollut. 2021;268:115699. doi: 10.1016/j.envpol.2020.115699. PubMed DOI
Chodak M., Khanna P., Horvath B., Beese F. Near infrared spectroscopy for determination of total and exchangeable cations in geologically heterogeneous forest soils. J. Near Infrared Spectrosc. 2004;12:315–324. doi: 10.1255/jnirs.440. DOI
Hang X., Wang H., Zhou J., Ma C., Du C., Chen X. Risk assessment of potentially toxic element pollution in soils and rice (Oryza sativa) in a typical area of the Yangtze River Delta. Environ. Pollut. 2009;157:2542–2549. doi: 10.1016/j.envpol.2009.03.002. PubMed DOI
Liu M., Wang T., Skidmore A.K., Liu X. Heavy metal-induced stress in rice crops detected using multi-temporal Sentinel-2 satellite images. Sci. Total Environ. 2018;637–638:18–29. doi: 10.1016/j.scitotenv.2018.04.415. PubMed DOI
Arellano P., Tansey K., Balzter H., Boyd D.S. Detecting the effects of hydrocarbon pollution in the Amazon forest using hyperspectral satellite images. Environ. Pollut. 2015;205:225–239. doi: 10.1016/j.envpol.2015.05.041. PubMed DOI
Kong F., Chen Y., Huang L., Yang Z., Zhu K. Human health risk visualization of potentially toxic elements in farmland soil: A combined method of source and probability. Ecotoxicol. Environ. Saf. 2021;211:111922. doi: 10.1016/j.ecoenv.2021.111922. PubMed DOI
Wang Z., Chen X., Yu D., Zhang L., Wang J., Lv J. Source apportionment and spatial distribution of potentially toxic elements in soils: A new exploration on receptor and geostatistical models. Sci. Total Environ. 2021;759:143428. doi: 10.1016/j.scitotenv.2020.143428. PubMed DOI
Skeffington R.A., Cosby B.J., Whitehead P.G. Long-term predictions of ecosystem acidification and recovery. Sci. Total Environ. 2016;568:381–390. doi: 10.1016/j.scitotenv.2016.06.033. PubMed DOI
Akselsson C., Hultberg H., Karlsson P.E., Pihl Karlsson G., Hellsten S. Acidification trends in south Swedish forest soils 1986–2008-Slow recovery and high sensitivity to sea-salt episodes. Sci. Total Environ. 2013;444:271–287. doi: 10.1016/j.scitotenv.2012.11.106. PubMed DOI
Marx A., Hintze S., Sanda M., Jankovec J., Oulehle F., Dusek J., Vitvar T., Vogel T., van Geldern R., Barth J.A.C. Acid rain footprint three decades after peak deposition: Long-term recovery from pollutant sulphate in the Uhlirska catchment (Czech Republic) Sci. Total Environ. 2017;598:1037–1049. doi: 10.1016/j.scitotenv.2017.04.109. PubMed DOI
EscartÍn E., Porte C. Biomonitoring of PAH Pollution in High-Altitude Mountain Lakes through the Analysis of Fish Bile. Environ. Sci. Technol. 1999;33:406–409. doi: 10.1021/es980798a. DOI
Kopáček J., Hejzlar J., Krám P., Oulehle F., Posch M. Effect of industrial dust on precipitation chemistry in the Czech Republic (Central Europe) from 1850 to 2013. Water Res. 2016;103:30–37. doi: 10.1016/j.watres.2016.07.017. PubMed DOI
Křeček J., Palán L., Stuchlík E. Impacts of land use policy on the recovery of mountain catchments from acidification. Land Use Policy. 2019;80:439–448. doi: 10.1016/j.landusepol.2017.10.018. DOI
U.S. EPA . EPA Positive Matrix Factorization (PMF) 3.0 Model. U.S. Environmental Protection Agency; Research Triangle Park, NC, USA: 2010. [(accessed on 20 March 2021)]. Available online: http://www.epa.gov/heasd/products/pmf/pmf.html.
IUSS Working Group WRB World Reference Base for Soil Resources 2014, Update 2015. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [(accessed on 2 December 2019)]; Available online: http://www.fao.org/publications/card/en/c/942e424c-85a9-411d-a739-22d5f8b6cc41.
Vacek O., Vašát R., Borůvka L. Quantifying the pedodiversity-elevation relations. Geoderma. 2020;373:114441. doi: 10.1016/j.geoderma.2020.114441. DOI
Tessier A., Campbell P.G.C., Bisson M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979;51:844–851. doi: 10.1021/ac50043a017. DOI
Pavlů L., Borůvka L., Drábek O., Nikodem A. Effect of natural and anthropogenic acidification on aluminium distribution in forest soils of two regions in the Czech Republic. J. For. Res. 2021;32:363–370. doi: 10.1007/s11676-019-01061-1. DOI
Melo B.A.G., Motta F.L., Santana M.H.A. Humanic acids: Structural properties and multiple functionalities for novel technical development. Mater. Sci. Eng. 2016;62:967–974. doi: 10.1016/j.msec.2015.12.001. PubMed DOI
Tomlinson D.L., Wilson J.G., Harris C.R., Jeffrey D.W. Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen. 1980;33:566–575. doi: 10.1007/BF02414780. DOI
Norris G., Duvall R., Brown S., Bai S. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide. U.S. Environmental Protection Agency, Office of Research and Development; Washington, DC, USA: 2014.
ESRI . ArcGIS Desktop: Release 10. Environmental Systems Research Institute; Redlands, CA, USA: 2019.
Webster R., Oliver M.A. Geostatistics for Environmental Scientists. 2nd ed. John Wiley & Sons Ltd.; Chichester, UK: 2007.
Brus D.J., Kempen B., Heuvelink G.B.M. Sampling for validation of digital soil maps. Eur. J. Soil Sci. 2011;62:394–407. doi: 10.1111/j.1365-2389.2011.01364.x. DOI
Vašát R., Pavlů L., Borůvka L., Drábek O., Nikodem A. Mapping the topsoil pH and humus quality of forest soils in the north bohemian Jizerské hory Mts. Region with ordinary, universal and regression kriging: Cross-validation comparison. Soil Water Res. 2013;8:97–104. doi: 10.17221/62/2012-SWR. DOI
Karami M., Afyuni M., Khoshgoftarmanesh A.H., Papritz A., Schulin R. Grain zinc, iron, and copper concentrations of wheat grown in central Iran and their relationships with soil and climate variables. J. Agric. Food Chem. 2009;57:10876–10882. doi: 10.1021/jf902074f. PubMed DOI
Kabata-Pendias A., Wiacek K. Excessive uptake of heavy metals by plants from contaminated soil. Soil Sci. Ann. 1985;36:33.
Guagliardi I., Cicchella D., De Rosa R. A geostatistical approach to assess concentration and spatial distribution of heavy metals in urban soils. Water Air Soil Pollut. 2012;223:5983–5998. doi: 10.1007/s11270-012-1333-z. DOI
Kabata-Pendias A., Pendias H. Biogeochemistry of Trace Elements. 2nd ed. Wyd. Nauk PWN; Warsaw, Poland: 1999.
Černik J., Kunc J., Martinat S. Territorial-technical and socio-economic aspects of successful brownfield regeneration: A case study of the liberec region (Czech Republic) Geogr. Tech. 2016;11:22–38. doi: 10.21163/GT_2016.112.03. DOI
Novák M., Erel Y., Zemanová L., Bottrel S.H., Adamová M. A comparison of lead pollution record in Sphagnum peat with known historical Pb emission rates in the British Isles and the Czech Republic. Atmos. Environ. 2008;42:8997–9006. doi: 10.1016/j.atmosenv.2008.09.031. DOI
Oulehle F., Hruska J. Tree species (Picea abies and Fagus sylvatica) effects on soil water acidification and aluminium chemistry at sites subjected to long term acidification in the Ore Mts., Czech Republic. J. Inorg. Biochem. 2005;99:1822–1829. doi: 10.1016/j.jinorgbio.2005.06.008. PubMed DOI
Wei W., Ma R., Sun Z., Zhou A., Bu J., Long X., Liu Y. Effects of Mining Activities on the Release of Heavy Metals (HMs) in a Typical Mountain Headwater Region, the Qinghai-Tibet Plateau in China. Int. J. Environ. Res. Public Health. 2018;15:1987. doi: 10.3390/ijerph15091987. PubMed DOI PMC
Maján G., Kozak M., Püspöki Z., McIntosh R., Miko L. Environmental geological examination of chromiumcontamination in Eastern Hungary. Environ. Geochem. Health. 2001;23:229–233. doi: 10.1023/A:1012413002257. DOI
Glasshiem E. Most, the Town that Moved: Coal, Communists and the ‘Gypsy Question’ in Post-War Czechoslovakia. Environ. Hist. 2007;13:447–476. doi: 10.3197/096734007X243168. DOI
Zuna M., Mihaljevic M., Sebek O., Ettler V., Handley M., Navrátil T., Goliás V. Recent lead deposition trends in the Czech Republic as recorded by peat bogs and tree rings. Atmos. Environ. 2011;45:4950–4958. doi: 10.1016/j.atmosenv.2011.06.007. DOI