Impact of in vivo T-cell depletion on outcome of AML patients in first CR given peripheral blood stem cells and reduced-intensity conditioning allo-SCT from a HLA-identical sibling donor: a report from the Acute Leukemia Working Party of the European Group for Blood and Marrow Transplantation
Language English Country Great Britain, England Media print-electronic
Document type Journal Article, Multicenter Study
PubMed
24419525
DOI
10.1038/bmt.2013.204
PII: bmt2013204
Knihovny.cz E-resources
- MeSH
- Leukemia, Myeloid, Acute blood therapy MeSH
- Alemtuzumab MeSH
- Antilymphocyte Serum metabolism MeSH
- Tissue Donors MeSH
- Adult MeSH
- HLA Antigens immunology MeSH
- Transplantation, Homologous MeSH
- Antibodies, Monoclonal, Humanized therapeutic use MeSH
- Incidence MeSH
- Remission Induction MeSH
- Stem Cells cytology MeSH
- Middle Aged MeSH
- Humans MeSH
- Melphalan therapeutic use MeSH
- Young Adult MeSH
- Multivariate Analysis MeSH
- Graft vs Host Disease MeSH
- Disease-Free Survival MeSH
- Transplantation Conditioning methods MeSH
- Proportional Hazards Models MeSH
- Recurrence MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Siblings MeSH
- T-Lymphocytes cytology MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Alemtuzumab MeSH
- Antilymphocyte Serum MeSH
- HLA Antigens MeSH
- Antibodies, Monoclonal, Humanized MeSH
- Melphalan MeSH
The impact of in vivo T-cell depletion on transplantation outcomes in patients transplanted with reduced-intensity conditioning (RIC) remains controversial. This study assessed the outcome of 1250 adult patients with de novo AML in first CR (CR1) given PBSC from HLA-identical siblings after chemotherapy-based RIC. A total of 554 patients did not receive any form of in vivo T-cell depletion (control group), whereas antithymocyte globulin (ATG) and alemtuzumab were given in 444 and 252 patients, respectively. The incidences of grade II-IV acute GVHD were 21.4, 17.6 and 10.2% in control, ATG and alemtuzumab patients, respectively (P<0.001). In multivariate analysis, the use of ATG and the use of alemtuzumab were each associated with a lower risk of chronic GVHD (P<0.001 each), but a similar risk of relapse, and of nonrelapse mortality, and similar leukemia-free survival and OS. Further, among patients given BU-based RIC, the use of <6 mg/kg ATG did not increase the risk of relapse (hazard ratio, HR=1.1), whereas there was a suggestion for higher relapse risk in patients given 6 mg/kg ATG (HR=1.4, P=0.08). In summary, these data suggest that a certain amount of in vivo T-cell depletion can be safely used in the conditioning of AML patients in CR1 given PBSC after chemotherapy-based RIC.
BMT Unit Department of Hematology Hacettepe University Ankara Turkey
Bone Marrow Transplantation Saint Louis Hospital Paris France
Charles University Medical School and Teaching Hospital Pilsen Czech Republic
Department of Hematology University Hospital Linköping Sweden
Department of Hematology University of Liège Liège Belgium
Hematology CHU de Bordeaux Bordeaux France
Hematology CHU de Marseille Marseille France
Hematology CHU de Nantes Nantes France
Hematology CHU de Toulouse Toulouse France
Hematology Division Sheba medical Center Tel Aviv University Tel Hashomer Israel
Hope Directorate St James's Hospital Dublin Ireland UK
Hospital Clinico Universitario Salamanca Spain
ICO Hospital Duran i Reynals l'Hospitalet de Llobregat Barcelona Spain
See more in PubMed
Leukemia. 2012 Dec;26(12):2462-8 PubMed
J Clin Oncol. 2005 Aug 1;23(22):5074-87 PubMed
J Clin Oncol. 2010 Jun 10;28(17):2859-67 PubMed
Bone Marrow Transplant. 2012 Nov;47(11):1442-7 PubMed
Stat Med. 1999 Mar 30;18(6):695-706 PubMed
J Clin Oncol. 2005 Mar 20;23(9):1993-2003 PubMed
Biol Blood Marrow Transplant. 2007 Jan;13(1 Suppl 1):87-97 PubMed
J Clin Oncol. 2010 Apr 10;28(11):1878-87 PubMed
Blood. 2012 Apr 5;119(14):3361-9 PubMed
Biol Blood Marrow Transplant. 2013 Jan;19(1):75-81 PubMed
Cancer. 2013 Mar 1;119(5):986-92 PubMed
J Clin Oncol. 2008 Feb 1;26(4):577-84 PubMed
Blood. 2004 Jan 1;103(1):347-52 PubMed
Blood. 1998 Feb 1;91(3):756-63 PubMed
Blood. 2012 Apr 5;119(14):3199-200 PubMed
Blood. 2001 Jun 1;97(11):3390-400 PubMed
Biol Blood Marrow Transplant. 2012 Nov;18(11):1727-33 PubMed
Leukemia. 2011 Mar;25(3):551-5 PubMed
Biol Blood Marrow Transplant. 2006 May;12(5):573-84 PubMed
Exp Hematol. 2008 May;36(5):535-44 PubMed
Leukemia. 2007 Jul;21(7):1387-94 PubMed
Leukemia. 2010 Nov;24(11):1867-74 PubMed
Bone Marrow Transplant. 2012 May;47(5):639-45 PubMed
Blood. 2011 Jun 9;117(23):6375-82 PubMed
Blood. 2005 Jun 1;105(11):4532-9 PubMed
Biol Blood Marrow Transplant. 2009 May;15(5):580-8 PubMed
N Engl J Med. 2012 Oct 18;367(16):1487-96 PubMed
Biol Blood Marrow Transplant. 2013 Apr;19(4):562-8 PubMed
Transplantation. 1974 Oct;18(4):295-304 PubMed
Bone Marrow Transplant. 2013 Feb;48(2):238-42 PubMed
Blood. 2011 Jun 23;117(25):6963-70 PubMed
Biol Blood Marrow Transplant. 2012 Sep;18(9):1422-9 PubMed
Blood. 2004 Feb 15;103(4):1548-56 PubMed
N Engl J Med. 2001 Jan 18;344(3):175-81 PubMed
Blood. 2003 Jul 15;102(2):470-6 PubMed
Biol Blood Marrow Transplant. 2007 Jun;13(6):724-33 PubMed
N Engl J Med. 1981 Jun 18;304(25):1529-33 PubMed
Blood. 1997 Jun 15;89(12):4531-6 PubMed
Curr Opin Hematol. 2007 Mar;14(2):145-51 PubMed