Breast cancer detection using combined curvelet based enhancement and a novel segmentation methods
Language English Country Czech Republic Media print-electronic
Document type Journal Article
PubMed
24457833
DOI
10.5507/bp.2013.097
Knihovny.cz E-resources
- MeSH
- Humans MeSH
- Mammography methods MeSH
- Breast Neoplasms diagnostic imaging MeSH
- Reproducibility of Results MeSH
- ROC Curve MeSH
- Models, Theoretical * MeSH
- Radiographic Image Enhancement * MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
AIM: This paper describes the digital implementation of a mathematical transform namely 2D Fast Discrete Curvelet Transform (FDCT) via UnequiSpaced Fast Fourier Transform (USFFT) in combination with the novel segmentation method for effective detection of breast cancer. METHODS: USFFT performs exact reconstructions with high image clarity. Radon, ridgelet and Cartesian filters are included in this method. Mean Square Error (MSE) and Peak Signal to Noise Ratio (PSNR) were calculated for the image and the resulting value showed that the proposed method performs well on mammogram image in reducing noise with good extraction of edges. This work includes a novel segmentation method, which combines Modified Local Range Modification (MLRM) and Laplacian of Gaussian (LoG) edge detection method to segment the textured features in the mammogram image. RESULTS: The result was analyzed using a Receiver Operating Characteristics (ROC) plot and the detection accuracy found was 99% which is good compared to existing methods.
References provided by Crossref.org