Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort

R. Reindl-Schwaighofer, A. Heinzel, A. Kainz, J. van Setten, K. Jelencsics, K. Hu, BL. Loza, M. Kammer, G. Heinze, P. Hruba, A. Koňaříková, O. Viklicky, GA. Boehmig, F. Eskandary, G. Fischer, F. Claas, JC. Tan, TJ. Albert, J. Patel, B. Keating,...

. 2019 ; 393 (10174) : 910-917. [pub] 20190214

Language English Country England, Great Britain

Document type Journal Article

E-resources Online Full text

NLK ProQuest Central from 1992-01-04 to 3 months ago
Nursing & Allied Health Database (ProQuest) from 1992-01-04 to 3 months ago
Health & Medicine (ProQuest) from 1992-01-04 to 3 months ago
Family Health Database (ProQuest) from 1992-01-04 to 3 months ago
Psychology Database (ProQuest) from 1992-01-04 to 3 months ago
Health Management Database (ProQuest) from 1992-01-04 to 3 months ago
Public Health Database (ProQuest) from 1992-01-04 to 3 months ago

BACKGROUND: The introduction of HLA matching of donors and recipients was a breakthrough in kidney transplantation. However, half of all transplanted kidneys still fail within 15 years after transplantation. Epidemiological data suggest a fundamental role of non-HLA alloimmunity. METHODS: We genotyped 477 pairs of deceased donors and first kidney transplant recipients with stable graft function at three months that were transplanted between Dec 1, 2005, and April 30, 2015. Genome-wide genetic mismatches in non-synonymous single nucleotide polymorphisms (nsSNPs) were calculated to identify incompatibilities in transmembrane and secreted proteins. We estimated the association between nsSNP mismatch and graft loss in a Cox proportional hazard model, adjusting for HLA mismatch and clinical covariates. Customised peptide arrays were generated to screen for antibodies against genotype-derived mismatched epitopes in 25 patients with biopsy-confirmed chronic antibody-mediated rejection. FINDINGS: 59 268 nsSNPs affecting a transmembrane or secreted protein were analysed. The median number of nsSNP mismatches in immune-accessible transmembrane and secreted proteins between donors and recipients was 1892 (IQR 1850-1936). The degree of nsSNP mismatch was independently associated with graft loss in a multivariable model adjusted for HLA eplet mismatch (HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ, and HLA-DR). Each increase by a unit of one IQR had an HR of 1·68 (95% CI 1·17-2·41, p=0·005). 5-year death censored graft survival was 98% in the quartile with the lowest mismatch, 91% in the second quartile, 89% in the third quartile, and 82% in the highest quartile (p=0·003, log-rank test). Customised peptide arrays verified a donor-specific alloimmune response to genetically predicted mismatched epitopes. INTERPRETATION: Genetic mismatch of non-HLA haplotypes coding for transmembrane or secreted proteins is associated with an increased risk of functional graft loss independently of HLA incompatibility. As in HLA alloimmunity, donor-specific alloantibodies can be identified against genotype derived non-HLA epitopes. FUNDING: Austrian Science Fund, WWTF (Vienna Science and Technology Fund), and Ministry of Health of the Czech Republic.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc19027806
003      
CZ-PrNML
005      
20190823092908.0
007      
ta
008      
190813s2019 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/S0140-6736(18)32473-5 $2 doi
035    __
$a (PubMed)30773281
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Reindl-Schwaighofer, Roman $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
245    10
$a Contribution of non-HLA incompatibility between donor and recipient to kidney allograft survival: genome-wide analysis in a prospective cohort / $c R. Reindl-Schwaighofer, A. Heinzel, A. Kainz, J. van Setten, K. Jelencsics, K. Hu, BL. Loza, M. Kammer, G. Heinze, P. Hruba, A. Koňaříková, O. Viklicky, GA. Boehmig, F. Eskandary, G. Fischer, F. Claas, JC. Tan, TJ. Albert, J. Patel, B. Keating, R. Oberbauer, iGeneTRAiN consortium,
520    9_
$a BACKGROUND: The introduction of HLA matching of donors and recipients was a breakthrough in kidney transplantation. However, half of all transplanted kidneys still fail within 15 years after transplantation. Epidemiological data suggest a fundamental role of non-HLA alloimmunity. METHODS: We genotyped 477 pairs of deceased donors and first kidney transplant recipients with stable graft function at three months that were transplanted between Dec 1, 2005, and April 30, 2015. Genome-wide genetic mismatches in non-synonymous single nucleotide polymorphisms (nsSNPs) were calculated to identify incompatibilities in transmembrane and secreted proteins. We estimated the association between nsSNP mismatch and graft loss in a Cox proportional hazard model, adjusting for HLA mismatch and clinical covariates. Customised peptide arrays were generated to screen for antibodies against genotype-derived mismatched epitopes in 25 patients with biopsy-confirmed chronic antibody-mediated rejection. FINDINGS: 59 268 nsSNPs affecting a transmembrane or secreted protein were analysed. The median number of nsSNP mismatches in immune-accessible transmembrane and secreted proteins between donors and recipients was 1892 (IQR 1850-1936). The degree of nsSNP mismatch was independently associated with graft loss in a multivariable model adjusted for HLA eplet mismatch (HLA-A, HLA-B, HLA-C, HLA-DP, HLA-DQ, and HLA-DR). Each increase by a unit of one IQR had an HR of 1·68 (95% CI 1·17-2·41, p=0·005). 5-year death censored graft survival was 98% in the quartile with the lowest mismatch, 91% in the second quartile, 89% in the third quartile, and 82% in the highest quartile (p=0·003, log-rank test). Customised peptide arrays verified a donor-specific alloimmune response to genetically predicted mismatched epitopes. INTERPRETATION: Genetic mismatch of non-HLA haplotypes coding for transmembrane or secreted proteins is associated with an increased risk of functional graft loss independently of HLA incompatibility. As in HLA alloimmunity, donor-specific alloantibodies can be identified against genotype derived non-HLA epitopes. FUNDING: Austrian Science Fund, WWTF (Vienna Science and Technology Fund), and Ministry of Health of the Czech Republic.
650    _2
$a dospělí $7 D000328
650    _2
$a alografty $x imunologie $7 D064591
650    _2
$a protilátky $x imunologie $7 D000906
650    _2
$a studie případů a kontrol $7 D016022
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a celogenomová asociační studie $7 D055106
650    _2
$a rejekce štěpu $x epidemiologie $x imunologie $7 D006084
650    12
$a přežívání štěpu $7 D006085
650    _2
$a HLA antigeny $x imunologie $7 D006680
650    _2
$a testování histokompatibility $x statistika a číselné údaje $7 D006650
650    _2
$a lidé $7 D006801
650    _2
$a Kaplanův-Meierův odhad $7 D053208
650    _2
$a transplantace ledvin $x statistika a číselné údaje $7 D016030
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a lidé středního věku $7 D008875
650    _2
$a hodnocení výsledků zdravotní péče $7 D017063
650    _2
$a jednonukleotidový polymorfismus $7 D020641
650    _2
$a proporcionální rizikové modely $7 D016016
650    _2
$a prospektivní studie $7 D011446
650    _2
$a dárci tkání $7 D014019
655    _2
$a časopisecké články $7 D016428
700    1_
$a Heinzel, Andreas $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Kainz, Alexander $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a van Setten, Jessica $u Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands.
700    1_
$a Jelencsics, Kira $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Hu, Karin $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Loza, Bao-Li $u Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
700    1_
$a Kammer, Michael $u Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
700    1_
$a Heinze, Georg $u Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria.
700    1_
$a Hruba, Petra $u Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Koňaříková, Alena $u Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Viklicky, Ondrej $u Transplant Laboratory, Institute for Clinical and Experimental Medicine, Prague, Czech Republic; Department of Nephrology, Transplant Center, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
700    1_
$a Boehmig, Georg A $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Eskandary, Farsad $u Department of Nephrology, Medical University of Vienna, Vienna, Austria.
700    1_
$a Fischer, Gottfried $u Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria.
700    1_
$a Claas, Frans $u Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands.
700    1_
$a Tan, John C $u Roche Madison, Madison, WI, USA.
700    1_
$a Albert, Tom J $u Roche Madison, Madison, WI, USA.
700    1_
$a Patel, Jigar $u Roche Madison, Madison, WI, USA.
700    1_
$a Keating, Brendan $u Department of Surgery, University of Pennsylvania, Philadelphia, PA, USA.
700    1_
$a Oberbauer, Rainer $u Department of Nephrology, Medical University of Vienna, Vienna, Austria. Electronic address: rainer.oberbauer@meduniwien.ac.at.
710    2_
$a iGeneTRAiN consortium
773    0_
$w MED00010161 $t Lancet (London, England) $x 1474-547X $g Roč. 393, č. 10174 (2019), s. 910-917
856    41
$u https://pubmed.ncbi.nlm.nih.gov/30773281 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20190813 $b ABA008
991    __
$a 20190823093123 $b ABA008
999    __
$a ok $b bmc $g 1432955 $s 1066266
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2019 $b 393 $c 10174 $d 910-917 $e 20190214 $i 1474-547X $m Lancet $n Lancet $x MED00010161
LZP    __
$a Pubmed-20190813

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...