• This record comes from PubMed

4-aminobenzoic acid-coated maghemite nanoparticles as potential anticancer drug magnetic carriers: a case study on highly cytotoxic Cisplatin-like complexes involving 7-azaindoles

. 2014 Jan 28 ; 19 (2) : 1622-34. [epub] 20140128

Language English Country Switzerland Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 24476602
PubMed Central PMC6271776
DOI 10.3390/molecules19021622
PII: molecules19021622
Knihovny.cz E-resources

This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs) as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2*) of highly in vitro cytotoxic cis-[PtCl2(3Claza)2] (1; 3Claza stands for 3-chloro-7-azaindole) or cis-[PtCl2(5Braza)2] (2; 5Braza stands for 5-bromo-7-azaindole), which were prepared by a silver(I) ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

See more in PubMed

Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer. 2007;7:573–584. doi: 10.1038/nrc2167. PubMed DOI

Butler J.S., Sadler P.J. Targeted delivery of platinum-based anticancer complexes. Curr. Opin. Chem. Biol. 2013;17:175–188. doi: 10.1016/j.cbpa.2013.01.004. PubMed DOI

Zhang Y., Chan H.F., Leong K.W. Advanced materials and processing for drug delivery: The past and the future. Adv. Drug Deliv. Rev. 2013;65:104–120. doi: 10.1016/j.addr.2012.10.003. PubMed DOI PMC

Goncalves A.S., Macedo A.S., Souto E.B. Therapeutic nanosystems for oncology nanomedicine. Clin. Transl. Oncol. 2012;14:883–890. doi: 10.1007/s12094-012-0912-1. PubMed DOI

Chomoucka J., Drbohlavova J., Huska D., Adam V., Kizek R., Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol. Res. 2010;62:144–149. doi: 10.1016/j.phrs.2010.01.014. PubMed DOI

Kievit F.M., Zhang M. Surface Engineering of iron oxide nanoparticles for targeted cancer therapy. Acc. Chem. Res. 2011;44:853–862. doi: 10.1021/ar2000277. PubMed DOI PMC

Gupta A.K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021. doi: 10.1016/j.biomaterials.2004.10.012. PubMed DOI

Laurent S., Forge D., Port M., Roch A., Robic C., Elst L.V., Muller R.N. Magnetic iron oxide nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical characterizations, and biological applications. Chem. Rev. 2008;108:2064–2110. doi: 10.1021/cr068445e. PubMed DOI

Kelkar S.S., Reineke T.M. Theranostics: Combining Imaging and Therapy. Bioconjugate. Chem. 2011;22:1879–1903. doi: 10.1021/bc200151q. PubMed DOI

Wang N., Guan Y., Yang L., Jia L., Wei X., Liu H., Guo G. Magnetic nanoparticles (MNPs) covalently coated by PEO–PPO–PEO block copolymer for drug delivery. J. Colloid Interface Sci. 2013;395:50–57. doi: 10.1016/j.jcis.2012.11.062. PubMed DOI

Nowicka A.M., Kowalczyk A., Jarzebinska A., Donten M., Krysinski P., Stojek Z. Progress in targeting tumor cells by using drug-magnetic nanoparticles conjugate. Biomacromolecules. 2013;14:828–833. doi: 10.1021/bm301868f. PubMed DOI

Karsten S., Nan A., Turcu R., Liebscher J. A new access to polypyrrole-based functionalized magnetic core-shell nanoparticles. J. Polym. Sci. Part. A Polym. Chem. 2012;50:3986–3995. doi: 10.1002/pola.26193. DOI

Fan C.H., Ting C.Y., Lin H.J., Wang C.H., Liu H.L., Yen T.C., Yeh C.K. SPIO-conjugated, doxorubicin-loaded microbubbles for concurrent MRI and focused-ultrasound enhanced brain-tumor drug delivery. Biomaterials. 2013;34:3706–3715. doi: 10.1016/j.biomaterials.2013.01.099. PubMed DOI

Gautiera J., Munniera E., Paillard A., Hervéa K., Douziech-Eyrollesa L., Soucé M., Duboisa P., Chourpa I. A pharmaceutical study of doxorubicin-loaded PEGylated nanoparticles for magnetic drug targeting. Int. J. Pharm. 2012;423:16–25. doi: 10.1016/j.ijpharm.2011.06.010. PubMed DOI

Kim J.E., Shin J.Y., Cho M.H. Magnetic nanoparticles: An update of application for drug delivery and possible toxic effects. Arch. Toxicol. 2012;86:685–700. doi: 10.1007/s00204-011-0773-3. PubMed DOI

Qi L., Wu L., Zheng S., Wang Y., Fu H., Cui D. Cell-Penetrating Magnetic Nanoparticles for Highly Efficient Delivery and Intracellular Imaging of siRNA. Biomacromolecules. 2012;13:2723–2730. doi: 10.1021/bm3006903. PubMed DOI

Huang P., Li Z., Lin J., Yang D., Gao G., Xu C., Bao L., Zhang C., Wang K., Song H., et al. Photosensitizer-conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011;32:3447–3458. doi: 10.1016/j.biomaterials.2011.01.032. PubMed DOI

Pan B., Cui D., Sheng Y., Ozkan C., Gao F., He R., Li Q., Xu P., Huang T. Dendrimer-modified magnetic nanoparticles enhance efficiency of gene delivery system. Cancer Res. 2007;67:8156–8163. doi: 10.1158/0008-5472.CAN-06-4762. PubMed DOI

Knezevic N.Z., Ruiz-Hernandez E., Hennink W.E., Vallet-Regi M. Magnetic mesoporous silica-based core/shellnanoparticlesfor biomedical applications. RSC Adv. 2013;3:9584–9593. doi: 10.1039/c3ra23127e. DOI

Wang J., Wang X., Song Y., Wang J., Zhang C., Chang C., Yan J., Qiu L., Wua M., Guo Z. A platinum anticancer theranostic agent with magnetic targeting potential derived from maghemite nanoparticles. Chem. Sci. 2013;4:2605–2612. doi: 10.1039/c3sc50554e. DOI

Wang J., Wang X., Song Y., Zhu C., Wang J., Wang K., Guo Z. Detecting and delivering platinum anticancer drugs using fluorescent maghemite nanoparticles. Chem. Commun. 2013;49:2786–2788. doi: 10.1039/c3cc39059d. PubMed DOI

Deng H., Lei Z. Preparation and characterization of hollow Fe3O4/SiO2@PEG–PLA nanoparticles for drug delivery. Composites Part. B. 2013;54:194–199. doi: 10.1016/j.compositesb.2013.05.010. DOI

Devi S.V., Prakash T. Kinetics of cisplatin release by in-vitro using poly(d,l-Lactide) coated Fe3O4 nanocarriers. IEEE Trans. Nanobiosci. 2013;12:60–63. doi: 10.1109/TNB.2012.2230024. PubMed DOI

Ashjari M., Khoee S., Mahdavian A.R. Controlling the morphology and surface property of magnetic/cisplatin-loaded nanocapsules via W/O/W double emulsion method. Colloids Surf. A Physicochem. Eng. Asp. 2012;408:87–96. doi: 10.1016/j.colsurfa.2012.05.035. DOI

Xie M., Xu Y., Liu J., Zhang T., Zhang H. Preparation and characterization of Folate targeting magnetic nanomedicine loaded with cisplatin. J. Nanomater. 2012;2012:921034.

Arias J.L., Reddy L.H., Othman M., Gillet B., Desmaele D., Zouhiri F., Dosio F., Gref R., Couvreur P. Squalene based nanocomposites: A new platform for the design of multifunctional pharmaceutical theragnostics. ACS Nano. 2011;5:1513–1521. doi: 10.1021/nn1034197. PubMed DOI

Xing R., Wang X., Zhang C., Wang J., Zhang Y., Song Y., Guo Z. Superparamagnetic magnetite nanocrystal clusters as potential magnetic carriers for the delivery of platinum anticancer drugs. J. Mater. Chem. 2011;21:11142–11149.

Sonoda A., Nitta N., Nitta-Seko A., Ohta S., Takamatsu S., Ikehata Y., Nagano I., Jo J., Tabata Y., Takahashi M., et al. Complex comprised of dextran magnetite and conjugated cisplatin exhibiting selective hyperthermic and controlled-release potential. Int. J. Nanomed. 2010;5:499–504. PubMed PMC

Yang J., Lee H., Hyung W., Park S.B., Haam S. Magnetic PECA nanoparticles as drug carriers for targeted delivery: Synthesis and release characteristics. J. Microencapsul. 2006;23:203–212. doi: 10.1080/02652040500435444. PubMed DOI

Li K., Chen B., Xu L., Feng J., Xia G., Cheng J., Wang J., Gao F., Wang X. Reversal of multidrug resistance by cisplatin-loaded magnetic Fe3O4 nanoparticles in A549/DDP lung cancer cells in vitro and in vivo. Int. J. Nanomed. 2013;8:1867–1877. PubMed PMC

Zhang Z., Chai A. Core-shell magnetite-silica composite nanoparticles enhancing DNA damage induced by a photoactive platinum-diimine complex in red light. J. Inor. Biochem. 2012;117:71–76. doi: 10.1016/j.jinorgbio.2012.09.005. PubMed DOI

Štarha P., Marek J., Trávníček Z. Cisplatin and oxaliplatin derivatives involving 7-azaindole: Structural characterisations. Polyhedron. 2012;33:104–409.

Štarha P., Trávníček Z., Popa A., Popa I., Muchová T., Brabec V. How to modify 7-azaindole to form cytotoxic Pt(II) complexes: Highly in vitro anticancer effective cisplatin derivatives involving halogeno-substituted 7-azaindole. J. Inorg. Biochem. 2012;105:57–63. PubMed

Muchová T., Prachařová J., Štarha P., Olivová R., Vrána O., Benešová B., Kašpárková J., Trávníček Z., Brabec V. Insight into the toxic effects ofcis-dichloridoplatinum(II) complexes containing 7-azaindole halogeno derivatives in tumor cells. J. Biol. Inorg. Chem. 2013;18:579–589. doi: 10.1007/s00775-013-1003-7. PubMed DOI

Maity D., Zoppellaro G., Sedenkova V., Tucek J., Safarova K., Polakova K., Tomankova K., Diwoky C., Stollberger R., Machala L., et al. Surface design of core–shell superparamagnetic iron oxide nanoparticles drives record relaxivity values in functional MRI contrast agents. Chem. Commun. 2012;48:11398–11400. doi: 10.1039/c2cc35515a. PubMed DOI

Hamoudeh M., Al Faraj A., Canet-Soulas E., Bessueille F., Leonard D., Fessi H. Pharmaceutical nanotechnology elaboration of PLLA-based superparamagnetic nanoparticles: Characterization, magnetic behaviour study and in vitro relaxivity evaluation. Int. J. Pharm. 2007;338:248–257. doi: 10.1016/j.ijpharm.2007.01.023. PubMed DOI

Dorniani D., Bin Hussein M.Z., Kura A.U., Fakurazi S., Shaari A.H., Ahmad Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int. J. Nanomed. 2012;7:5745–5756. PubMed PMC

Cafaggi S., Esposito M., Parodi B., Viale M. A water-soluble 1,2-diaminocyclohexaneplatinum(II) complex containing procaine hydrochloride: Synthesis and antiproliferative activity in vitro. Pharmazie. 1994;49:617–618. PubMed

Kukushkin Y.N., Blyumental T.O., Konovalov L.V. Complex compounds of platinum(II) with p- and m-aminobenzoic acids. Zh. Obshch. Khim. 1979;49:1376–1379.

Rudyi R.I., Solomentseva A.I., Cherkashina N.V., Evstafeva O.N., Salyn Y.V., Moiseev I.I. Complexes of platinum(II) and platinum(IV) with aromatic amines. Koord. Khim. 1976;2:499–506.

Davies G.R., Hewertson W., Mais R.H.B., Owston P.G., Patel C.G. π-Complexes of platinum (II) with unsaturated hydrocarbons. Part II. Crystal and molecular structure of trans-dichloro-(π-di-t-butylacetyl-ene)-p-toluidineplatinum (II) J. Chem. Soc. A. 1970:1873–1877.

Rochon F.D., Bonnier C. Study of Pt(II)-aromatic amines complexes of the types cis- and trans-Pt(amine)2I2, [Pt(amine)4]I2 and I(amine)Pt(μ-I)2Pt(amine)I. Inorg. Chim. Acta. 2007;360:461–472.

Karthikeyan B. Density functional calculations on the structure, vibrational frequencies and normal modes of 7-Azaindole. Spectrochim. Acta. 2006;A64:1083–1087. doi: 10.1016/j.saa.2005.09.019. PubMed DOI

Ye X., Lin D., Jiao Z., Zhang L. The thermal stability of nanocrystalline maghemite Fe2O3. J. Phys. D-Appl. Phys. 1998;31:2739–2744. doi: 10.1088/0022-3727/31/20/006. DOI

Cornell R.M., Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrence and Uses. Wiley-VCH Publishers; Weinheim, Germany: 2003.

Prochazka R., Tucek P., Tucek J., Marek J., Mashlan M., Pechousek J. Statistical analysis and digital processing of the Mössbauer spectra. Meas. Sci. Technol. 2010;21:025107. doi: 10.1088/0957-0233/21/2/025107. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...