Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24551219
PubMed Central
PMC3923860
DOI
10.1371/journal.pone.0089070
PII: PONE-D-13-50379
Knihovny.cz E-zdroje
- MeSH
- chromatin genetika metabolismus MeSH
- exprese genu MeSH
- genetické vektory chemie MeSH
- histony genetika metabolismus MeSH
- konkatenovaná DNA genetika metabolismus MeSH
- kruhová DNA genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- oxidace-redukce MeSH
- protein HMGB1 genetika metabolismus MeSH
- rekombinantní proteiny genetika metabolismus MeSH
- skot MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chromatin MeSH
- histony MeSH
- konkatenovaná DNA MeSH
- kruhová DNA MeSH
- protein HMGB1 MeSH
- rekombinantní proteiny MeSH
HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.
Zobrazit více v PubMed
Štros M (2010) HMGB proteins: interactions with DNA and chromatin. Biochim Biophys Acta 1799: 101–113. PubMed
Tang D, Billiar TR, Lotze MT (2012) A Janus tale of two active high mobility group box 1 (HMGB1) redox states. Mol Med 18: 1360–1362. PubMed PMC
Li G, Liang X, Lotze MT (2013) HMGB1: The Central Cytokine for All Lymphoid Cells. Front Immunol 4: 68. PubMed PMC
Calogero S, Grassi F, Aguzzi A, Voigtlander T, Ferrier P, et al. (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22: 276–280. PubMed
Hoppe G, Talcott KE, Bhattacharya SK, Crabb JW, Sears JE (2006) Molecular basis for the redox control of nuclear transport of the structural chromatin protein Hmgb1. Exp Cell Res 312: 3526–3538. PubMed
Venereau E, Casalgrandi M, Schiraldi M, Antoine DJ, Cattaneo A, et al. (2012) Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release. J Exp Med 209: 1519–1528. PubMed PMC
Billings PC, Davis RJ, Engelsberg BN, Skov KA, Hughes EN (1992) Characterization of high mobility group protein binding to cisplatin-damaged DNA. Biochem Biophys Res Commun 188: 1286–1294. PubMed
Sheflin LG, Fucile NW, Spaulding SW (1993) The specific interactions of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG 1/2 boxes. Biochemistry 32: 3238–3248. PubMed
Park S, Lippard SJ (2011) Redox state-dependent interaction of HMGB1 and cisplatin-modified DNA. Biochemistry 50: 2567–2574. PubMed PMC
Štros M, Reich J, Kolibalová A (1994) Calcium binding to HMG1 protein induces DNA looping by the HMG-box domains. FEBS Lett 344: 201–206. PubMed
Izzo A, Kamieniarz K, Schneider R (2008) The histone H1 family: specific members, specific functions? Biol Chem 389: 333–343. PubMed
Sirotkin AM, Edelmann W, Cheng G, Klein-Szanto A, Kucherlapati R, et al. (1995) Mice develop normally without the H1(0) linker histone. Proc Natl Acad Sci U S A 92: 6434–6438. PubMed PMC
Fan Y, Nikitina T, Morin-Kensicki EM, Zhao J, Magnuson TR, et al. (2003) H1 linker histones are essential for mouse development and affect nucleosome spacing in vivo. Mol Cell Biol 23: 4559–4572. PubMed PMC
Jackson JB, Pollock JM Jr, Rill RL (1979) Chromatin fractionation procedure that yields nucleosomes containing near-stoichiometric amounts of high mobility group nonhistone chromosomal proteins. Biochemistry 18: 3739–3748. PubMed
Štros M, Vorlíčková M (1990) Non-histone chromosomal protein HMG1 reduces the histone H5-induced changes in c.d. spectra of DNA: the acidic C-terminus of HMG1 is necessary for binding to H5. Int J Biol Macromol 12: 282–288. PubMed
Ner SS, Travers AA (1994) HMG-D, the Drosophila melanogaster homologue of HMG 1 protein, is associated with early embryonic chromatin in the absence of histone H1. Embo J 13: 1817–1822. PubMed PMC
Nightingale K, Dimitrov S, Reeves R, Wolffe AP (1996) Evidence for a shared structural role for HMG1 and linker histones B4 and H1 in organizing chromatin. Embo J 15: 548–561. PubMed PMC
Cato L, Stott K, Watson M, Thomas JO (2008) The interaction of HMGB1 and linker histones occurs through their acidic and basic tails. J Mol Biol 384: 1262–1272. PubMed
Štros M (1998) DNA bending by the chromosomal protein HMG1 and its high mobility group box domains. Effect of flanking sequences. J Biol Chem 273: 10355–10361. PubMed
Štros M, Cherny D, Jovin TM (2000) HMG1 protein stimulates DNA end joining by promoting association of DNA molecules via their ends. Eur J Biochem 267: 4088–4097. PubMed
Štros M, Reich J (1998) Formation of large nucleoprotein complexes upon binding of the high-mobility-group (HMG) box B-domain of HMG1 protein to supercoiled DNA. Eur J Biochem 251: 427–434. PubMed
Grabarz A, Barascu A, Guirouilh-Barbat J, Lopez BS (2012) Initiation of DNA double strand break repair: signaling and single-stranded resection dictate the choice between homologous recombination, non-homologous end-joining and alternative end-joining. Am J Cancer Res 2: 249–268. PubMed PMC
Nagaki S, Yamamoto M, Yumoto Y, Shirakawa H, Yoshida M, et al. (1998) Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks. Biochem Biophys Res Commun 246: 137–141. PubMed
Webb M, Payet D, Lee KB, Travers AA, Thomas JO (2001) Structural requirements for cooperative binding of HMG1 to DNA minicircles. J Mol Biol 309: 79–88. PubMed
Gaillard C, Strauss F (2000) DNA loops and semicatenated DNA junctions. BMC Biochem 1: 1. PubMed PMC
Gaillard C, Strauss F (2000) High affinity binding of proteins HMG1 and HMG2 to semicatenated DNA loops. BMC Mol Biol 1: 1. PubMed PMC
Štros M, Muselíková-Polanská E, Pospíšilová Š, Strauss F (2004) High-affinity binding of tumor-suppressor protein p53 and HMGB1 to hemicatenated DNA loops. Biochemistry 43: 7215–7225. PubMed
Jaouen S, de Koning L, Gaillard C, Muselíková-Polanská E, Štros M, et al. (2005) Determinants of specific binding of HMGB1 protein to hemicatenated DNA loops. J Mol Biol 353: 822–837. PubMed
Yaneva J, Leuba SH, van Holde K, Zlatanova J (1997) The major chromatin protein histone H1 binds preferentially to cis-platinum-damaged DNA. Proc Natl Acad Sci U S A 94: 13448–13451. PubMed PMC
Hendzel MJ, Lever MA, Crawford E, Th′ng JP (2004) The C-terminal domain is the primary determinant of histone H1 binding to chromatin in vivo. J Biol Chem 279: 20028–20034. PubMed
Lu X, Hansen JC (2004) Identification of specific functional subdomains within the linker histone H10 C-terminal domain. J Biol Chem 279: 8701–8707. PubMed
Carballo M, Puigdomenech P, Palau J (1983) DNA and histone H1 interact with different domains of HMG 1 and 2 proteins. Embo J 2: 1759–1764. PubMed PMC
Varga-Weisz P, van Holde K, Zlatanova J (1993) Preferential binding of histone H1 to four-way helical junction DNA. J Biol Chem 268: 20699–20700. PubMed
Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243: 1056–1059. PubMed
Chow CS, Barnes CM, Lippard SJ (1995) A single HMG domain in high-mobility group 1 protein binds to DNAs as small as 20 base pairs containing the major cisplatin adduct. Biochemistry 34: 2956–2964. PubMed
Zlatanova J, van Holde K (1998) Linker histones versus HMG1/2: a struggle for dominance? Bioessays 20: 584–588. PubMed
Ogawa Y, Aizawa S, Shirakawa H, Yoshida M (1995) Stimulation of transcription accompanying relaxation of chromatin structure in cells over-expressing high mobility group 1 protein. J Biol Chem 270: 9272–9280. PubMed
Catez F, Yang H, Tracey KJ, Reeves R, Misteli T, et al. (2004) Network of dynamic interactions between histone H1 and high-mobility-group proteins in chromatin. Mol Cell Biol 24: 4321–4328. PubMed PMC
Ura K, Nightingale K, Wolffe AP (1996) Differential association of HMG1 and linker histones B4 and H1 with dinucleosomal DNA: structural transitions and transcriptional repression. Embo J 15: 4959–4969. PubMed PMC
Villar-Garea A, Imhof A (2008) Fine mapping of posttranslational modifications of the linker histone H1 from Drosophila melanogaster. PLoS One 3: e1553. PubMed PMC
Ju BG, Lunyak VV, Perissi V, Garcia-Bassets I, Rose DW, et al. (2006) A topoisomerase IIbeta-mediated dsDNA break required for regulated transcription. Science 312: 1798–1802. PubMed
Lyubchenko YL, Shlyakhtenko LS, Binus M, Gaillard C, Strauss F (2002) Visualization of hemiknot DNA structure with an atomic force microscope. Nucleic Acids Res 30: 4902–4909. PubMed PMC