Identification of pheromone components and their binding affinity to the odorant binding protein CcapOBP83a-2 of the Mediterranean fruit fly, Ceratitis capitata

. 2014 May ; 48 (100) : 51-62. [epub] 20140307

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24607850

Grantová podpora
BBS/E/C/00004944 Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/C/00004947 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/L001683/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/I024941/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 24607850
PubMed Central PMC4003389
DOI 10.1016/j.ibmb.2014.02.005
PII: S0965-1748(14)00031-9
Knihovny.cz E-zdroje

The Mediterranean fruit fly (or medfly), Ceratitis capitata (Wiedemann; Diptera: Tephritidae), is a serious pest of agriculture worldwide, displaying a very wide larval host range with more than 250 different species of fruit and vegetables. Olfaction plays a key role in the invasive potential of this species. Unfortunately, the pheromone communication system of the medfly is complex and still not well established. In this study, we report the isolation of chemicals emitted by sexually mature individuals during the "calling" period and the electrophysiological responses that these compounds elicit on the antennae of male and female flies. Fifteen compounds with electrophysiological activity were isolated and identified in male emissions by gas chromatography coupled to electroantennography (GC-EAG). Within the group of 15 identified compounds, 11 elicited a response in antennae of both sexes, whilst 4 elicited a response only in female antennae. The binding affinity of these compounds, plus 4 additional compounds known to be behaviourally active from other studies, was measured using C. capitata OBP, CcapOBP83a-2. This OBP has a high homology to Drosophila melanogaster OBPs OS-E and OS-F, which are associated with trichoid sensilla and co-expressed with the well-studied Drosophila pheromone binding protein LUSH. The results provide evidence of involvement of CcapOBP83a-2 in the medfly's odorant perception and its wider specificity for (E,E)-α-farnesene, one of the five major compounds in medfly male pheromone emission. This represents the first step in the clarification of the C. capitata and pheromone reception pathway, and a starting point for further studies aimed towards the creation of new powerful attractants or repellents applicable in the actual control strategies.

Zobrazit více v PubMed

Alfaro C., Vacas S., Zarzo M., Navarro-Llopis V., Primo J. Solid phase microextraction of volatile emissions of Ceratitis capitata (Wiedemann) (Diptera: Tephritidae): influence of fly sex, age, and mating status. J. Agric. Food Chem. 2011;59:298–306. PubMed

Arita L.H., Kaneshiro K.Y. Sexual selection and lek behavior in the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) Pac. Sci. 1989;43:135–143.

Ban L., Scaloni A., D'Ambrosio C., Zhang L., Yahn Y., Pelosi P. Biochemical characterization and bacterial expression of an odorant-binding protein from Locusta migratoria. Cell. Mol. Life Sci. CMLS. 2003;60:390–400. PubMed PMC

Eberhard W.G. Sexual behavior and sexual selection in the Mediterranean fruit fly, Ceratitis capitata (Dacinae: Ceratitidini) Fruit Flies (Tephritidae) Phylogeny Evol. Behav. 2000:459–489.

Feron M. Attraction Chimique Du male de Ceratitis capitata Wied (Dipt Trypetidae) Pour La Femelle. Cr Hebd. Acad. Sci. 1959;248:2403–2404.

Feron M.M. L'instinct de reproduction chez la mouche mediterraneene des fruits Ceratits capitata. Comportement sexuel. Comportement de ponte. Rev. Pathol. Veg. Entomol. Agric. Fr. 1962:1–129.

Gomulski L.M., Dimopoulos G., Xi Z., Scolari F., Gabrieli P., Siciliano P., Clarke A.R., Malacrida A.R., Gasperi G. Transcriptome profiling of sexual maturation and mating in the Mediterranean fruit fly, Ceratitis capitata. PLoS One. 2012;7:e30857. PubMed PMC

Gomulski L.M., Dimopoulos G., Xi Z., Soares M.B., Bonaldo M.F., Malacrida A.R., Gasperi G. Gene discovery in an invasive tephritid model pest species, the Mediterranean fruit fly, Ceratitis capitata. BMC Genomics. 2008;9:243. PubMed PMC

Goncalves G.B., Silva C.E., Dos Santos J.C.G., Dos Santos E.S., Do Nascimento R.R., Da Silva E.L., Mendonca A.D.L., De Freitas M.D., Sant'Ana A.E.G. Comparison of the volatile components released by calling males of Ceratitis capitata (Diptera: Tephritidae) with those extractable from the salivary glands. Fla Entomol. 2006;89:375–379.

Gong Z.J., Zhou W.W., Yu H.Z., Mao C.G., Zhang C.X., Cheng J.A., Zhu Z.R. Cloning, expression and functional analysis of a general odorant-binding protein 2 gene of the rice striped stem borer, Chilo suppressalis (Walker) (Lepidoptera: Pyralidae) Insect Mol. Biol. 2009;18:405–417. PubMed

Guo H., Huang L.Q., Pelosi P., Wang C.Z. Three pheromone-binding proteins help segregation between two Helicoverpa species utilizing the same pheromone components. Insect Biochem. Mol. Biol. 2012;42:708–716. PubMed

Ha T.S., Smith D.P. A pheromone receptor mediates 11-cis-vaccenyl acetate-induced responses in Drosophila. J. Neurosci. Off. J. Soc. Neurosci. 2006;26:8727–8733. PubMed PMC

He X.L., Tzotzos G., Woodcock C., Pickett J.A., Hooper T., Field L.M., Zhou J.J. Binding of the general odorant binding protein of Bombyx mori BmorGOBP2 to the moth sex pheromone components. J. Chem. Ecol. 2010;36:1293–1305. PubMed

Hekmat-Scafe D.S., Dorit R.L., Carlson J.R. Molecular evolution of odorant-binding protein genes OS-E and OS-F in Drosophila. Genetics. 2000;155:117–127. PubMed PMC

Hekmat-Scafe D.S., Scafe C.R., McKinney A.J., Tanouye M.A. Genome-wide analysis of the odorant-binding protein gene family in Drosophila melanogaster. Genome Res. 2002;12:1357–1369. PubMed PMC

Hekmat-Scafe D.S., Steinbrecht R.A., Carlson J.R. Coexpression of two odorant-binding protein homologs in Drosophila: implications for olfactory coding. J. Neurosci.Off. J. Soc. Neurosci. 1997;17:1616–1624. PubMed PMC

Hern A., Dorn S. Sexual dimorphism in the olfactory orientation of adult Cydia pomonella in response to alpha-farnesene. Entomol. Exp. Appl. 1999;92:63–72.

Jacobson M., Ohinata K., Chambers D.L., Jones W.A., Fujimoto M.S. Insect sex attractants .13. Isolation, identification, and synthesis of sex pheromones of male Mediterranean fruit-fly. J. Med. Chem. 1973;16:248–251. PubMed

Jang E.B., Light D.M. Attraction of female Mediterranean fruit flies to identified components of the male-produced pheromone: qualitative aspects of major, intermediate, and minor components. Fruit. Fly. Pests. 1996:115–121.

Jang E.B., Light D.M., Flath R.A., Nagata J.T., Mon T.R. Electroantennogram responses of the Mediterranean fruit-fly, Ceratitis capitata to identified volatile constituents from calling males. Entomol. Exp. Appl. 1989;50:7–19.

Joint-FAO/IAEA-Division . Intarnational Atomic Energy Agency; Vienna, Austria: 1985. Report of the Consultants' Meeting on: the Application of Genetics Engineering and Recombinant DNA Technology in the Development of Genetic Sexing Mechanisms for the Mediterranean Fruit Fly, Ceratitis capitata (Wied)

Katoh K., Kuma K., Toh H., Miyata T. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005;33:511–518. PubMed PMC

Lagarde A., Spinelli S., Tegoni M., He X., Field L., Zhou J.J., Cambillau C. The crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. J. Mol. Biol. 2011;414:401–412. PubMed

Levinson H.Z., Levinson A.R., Schafer K. Pheromone biology of the Mediterranean fruit-fly (Ceratitis capitata Wied) with emphasis on the functional-anatomy of the pheromone glands and antennae as well as mating-behavior. J. Appl. Entomol. 1987;104:448–461.

Maddison P.A., Bartlett B.J. Contribution towards the zoogeography of the Tephritidae. In: Robinson A.S., Hooper G.H., editors. Fruit Flies: Their Biology, Natural Enemies and Control. Elsevier Science Publ; Amsterdam: 1989. pp. 27–35.

Malacrida A.R., Gomulski L.M., Bonizzoni M., Bertin S., Gasperi G., Guglielmino C.R. Globalization and fruitfly invasion and expansion: the medfly paradigm. Genetica. 2007;131:1–9. PubMed

McKenna M.P., Hekmat-Scafe D.S., Gaines P., Carlson J.R. Putative Drosophila pheromone-binding proteins expressed in a subregion of the olfactory system. J. Biol. Chem. 1994;269:16340–16347. PubMed

Ohinata K., Jacobson M., Nakagawa S., Fujimoto M., Higa H. Mediterranean fruit fly: laboratory and field evaluations of synthetic sex pheromones. J. Environ. Sci. Health, Part A. 1977:67–68.

Pikielny C.W., Hasan G., Rouyer F., Rosbash M. Members of a family of Drosophila putative odorant-binding proteins are expressed in different subsets of olfactory hairs. Neuron. 1994;12:35–49. PubMed

Prokopy R.J., Hendrichs J. Mating-Behavior of Ceratitis capitata (Diptera, Tephritidae) on a field-Caged host tree. Ann. Entomol. Soc. Am. 1979;72:642–648.

Qiao H., Tuccori E., He X., Gazzano A., Field L., Zhou J.J., Pelosi P. Discrimination of alarm pheromone (E)-beta-farnesene by aphid odorant-binding proteins. Insect Biochem Mol. Biol. 2009;39:414–419. PubMed

Qiao H.L., He X.L., Schymura D., Ban L.P., Field L., Dani F.R., Michelucci E., Caputo B., della Torre A., Iatrou K., Zhou J.J., Krieger J., Pelosi P. Cooperative interactions between odorant-binding proteins of Anopheles gambiae. Cell. Mol. Life Sci. 2011;68:1799–1813. PubMed PMC

Ramsdell K.M., Lyons-Sobaski S.A., Robertson H.M., Walden K.K., Feder J.L., Wanner K., Berlocher S.H. Expressed sequence tags from cephalic chemosensory organs of the northern walnut husk fly, Rhagoletis suavis, including a putative canonical odorant receptor. J. Insect Sci. 2010;10:51. PubMed PMC

Sanchez-Gracia A., Rozas J. Divergent evolution and molecular adaptation in the Drosophila odorant-binding protein family: inferences from sequence variation at the OS-E and OS-F genes. BMC Evol. Biol. 2008;8:323. PubMed PMC

Schwarz D., Robertson H.M., Feder J.L., Varala K., Hudson M.E., Ragland G.J., Hahn D.A., Berlocher S.H. Sympatric ecological speciation meets pyrosequencing: sampling the transcriptome of the apple maggot Rhagoletis pomonella. BMC Genomics. 2009;10:633. PubMed PMC

Scolari F., Gomulski L.M., Ribeiro J.M., Siciliano P., Meraldi A., Falchetto M., Bonomi A., Manni M., Gabrieli P., Malovini A., Bellazzi R., Aksoy S., Gasperi G., Malacrida A.R. Transcriptional profiles of mating-responsive genes from testes and male accessory glands of the Mediterranean fruit fly, Ceratitis capitata. PLoS One. 2012;7:e46812. PubMed PMC

Shanbhag S.R., Hekmat-Scafe D., Kim M.S., Park S.K., Carlson J.R., Pikielny C., Smith D.P., Steinbrecht R.A. Expression mosaic of odorant-binding proteins in Drosophila olfactory organs. Microsc. Res. Tech. 2001;55:297–306. PubMed

Shelly T.E., Whittier T.S., Kaneshiro K.Y. Sterile insect release and the natural mating system of the Mediterranean fruit-fly, Ceratitis capitata (Diptera, Tephritidae) Ann. Entomol. Soc. Am. 1994;87:470–481.

Siciliano P., Scolari F., Gomulski L.M., Falchetto M., Manni M., Gabrieli P., Field L.M., Zhou J.J., Gasperi G., Malacrida A.R. Sniffing out chemosensory genes from the Mediterranean fruit fly, Ceratitis capitata. PLoS One. 2014;9:e85523. PubMed PMC

Sobotnik J., Hanus R., Kalinova B., Piskorski R., Cvacka J., Bourguignon T., Roisin Y. (E,E)-alpha-Farnesene, an Alarm Pheromone of the Termite Prorhinotermes canalifrons. J. Chem. Ecol. 2008;34:478–486. PubMed

Spinelli S., Lagarde A., Iovinella I., Legrand P., Tegoni M., Pelosi P., Cambillau C. Crystal structure of Apis mellifera OBP14, a C-minus odorant-binding protein, and its complexes with odorant molecules. Insect Biochem. Mol. Biol. 2012;42:41–50. PubMed

Sun M., Liu Y., Wang G. Expression patterns and binding properties of three pheromone binding proteins in the diamondback moth, Plutella xyllotella. J Insect Physiol. 2013;59:46–55. PubMed

Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011;28:2731–2739. PubMed PMC

Ukeh D.A., Birkett M.A., Pickett J.A., Bowman A.S., Luntz A.J. Repellent activity of alligator pepper, Aframomum melegueta, and ginger, Zingiber officinale, against the maize weevil, Sitophilus zeamais. Phytochemistry. 2009;70:751–758. PubMed

Vandermoten S., Francis F., Haubruge E., Leal W.S. Conserved odorant-binding proteins from aphids and Eavesdropping Predators. Plos One. 2011;6 PubMed PMC

Vaníčková L., do Nascimento R.R., Hoskovec M., Jezkova Z., Brizova R., Tomcala A., Kalinova B. Are the wild and laboratory insect populations different in semiochemical emission? The case of the medfly sex pheromone. J Agric Food Chem. 2012;60:7168–7176. PubMed

Vieira F.G., Rozas J. Comparative genomics of the odorant-binding and chemosensory protein gene families across the Arthropoda: origin and evolutionary history of the chemosensory system. Genome Biol. Evol. 2011;3:476–490. PubMed PMC

Wadhams L.J. The use of coupled gas chromatography: electrophysiological techniques in the identification of insect pheromones. In: McCaffery A.R., Wilson I.D., editors. Chromatography and Isolation of Insect Hormones and Pheromones. Plenum Press; New York: 1990. pp. 289–298.

Wadhams L.J., Angst M.E., Blight M.M. Responses of the olfactory receptors of Scolytus-Scolytus-(F) (Coleoptera, Scolytidae) to the stereoisomers of 4-methyl-3-heptanol. J. Chem. Ecol. 1982;8:477–492. PubMed

Wang S.C., Tseng T.Y., Huang C.M., Tsai T.H. Gardenia herbal active constituents: applicable separation procedures. J. Chromatogr. B. 2004;812:193–202. PubMed

Whittier T.S., Kaneshiro K.Y., Prescott L.D. Mating-Behavior of mediterranean fruit-flies (Diptera, Tephritidae) in a natural-environment. Ann. Entomol. Soc. Am. 1992;85:214–218.

Whelan S., Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular biology and evolution. 2001;18:691–699. PubMed

Yang G., Winberg G., Ren H., Zhang S.G. Expression, purification and functional analysis of an odorant binding protein AaegOBP22 from Aedes aegypti. Protein Expres Purif. 2011;75:165–171. PubMed

Yuval B., Hendrichs J. Behavior of flies in the genus Ceratitis (Dacinae: Ceratitidini) Fruit Flies (Tephritidae): Phylogeny Evol. Behav. 2000:429–457.

Zhang T.T., Mei X.D., Feng J.N., Berg B.G., Zhang Y.J., Guo Y.Y. Characterization of three pheromone-binding proteins (PBPs) of Helicoverpa armigera (Hubner) and their binding properties. J. Insect Physiol. 2012;58:941–948. PubMed

Zheng W., Peng W., Zhu C., Zhang Q., Saccone G., Zhang H. Identification and expression profile analysis of odorant binding proteins in the oriental fruit fly Bactrocera dorsalis. Int. J. Mol. Sci. 2013;14:14936–14949. PubMed PMC

Zhou J.J., He X.L., Pickett J.A., Field L.M. Identification of odorant-binding proteins of the yellow fever mosquito Aedes aegypti: genome annotation and comparative analyses. Insect Mol. Biol. 2008;17:147–163. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives

. 2021 Apr 30 ; 12 (5) : . [epub] 20210430

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...