Efficient recovery of whole cell proteins in Oenococcus oeni--a comparison of different extraction protocols for high-throughput malolactic starter applications
Language English Country United States Media print-electronic
Document type Journal Article
- MeSH
- Electrophoresis, Gel, Two-Dimensional MeSH
- Bacterial Proteins analysis isolation & purification MeSH
- Electrophoresis, Polyacrylamide Gel MeSH
- Molecular Biology methods MeSH
- Oenococcus chemistry isolation & purification MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization MeSH
- Wine microbiology MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
In this study, we compared different total protein extraction protocols to achieve highly efficient isolation and purification of total proteins for the specific protein profiling of Oenococcus oeni. The sodium dodecyl sulfate-polyacrylamide gel electrophoresis patterns obtained for the different extraction protocols revealed not only a qualitative similar protein pattern but also quantitative variations with different intensity bands depending on the extraction method used. The selected extraction method added with sonication proved to work extremely well and efficiently and was able to obtain a high-resolution 2-D electrophoresis (2-DE) map. Prominent spots were successfully identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and corresponded to 76 different proteins involved in the main metabolic pathways. The approach allowed to achieve a protein profiling specific for O. oeni from Aglianico wine with numerous characterized protein products corresponding to many different O. oeni genes and associated with main cellular pathways. Further investigations of the 2-DE protein expression profile will provide useful and interesting information on the molecular mechanisms at the protein level responsible for growth and survival of O. oeni in wine.
See more in PubMed
Appl Microbiol Biotechnol. 2011 Nov;92(3):441-7 PubMed
Nature. 1970 Aug 15;227(5259):680-5 PubMed
Proteomics. 2006 Jan;6(1):181-92 PubMed
J Bacteriol. 2005 May;187(10):3455-64 PubMed
FEMS Microbiol Lett. 2009 Jul;296(1):11-7 PubMed
Appl Microbiol Biotechnol. 2009 Feb;82(1):87-94 PubMed
J Ind Microbiol Biotechnol. 2008 Jan;35(1):27-33 PubMed
Electrophoresis. 2009 Sep;30(17):2988-2995 PubMed
J Biosci Bioeng. 2009 Sep;108(3):220-4 PubMed
Int J Food Microbiol. 2005 Dec 15;105(3):463-70 PubMed
Lett Appl Microbiol. 2008 Aug;47(2):134-9 PubMed
Microbiology (Reading). 2000 Dec;146 Pt 12:3195-3204 PubMed
FEMS Microbiol Rev. 2005 Aug;29(3):465-75 PubMed
FEMS Microbiol Lett. 2004 Jan 15;230(1):53-61 PubMed
Electrophoresis. 2003 Jun;24(11):1795-808 PubMed
FEMS Microbiol Lett. 2001 Aug 7;202(1):109-14 PubMed
Anal Biochem. 1976 May 7;72:248-54 PubMed
Anal Biochem. 1984 Apr;138(1):141-3 PubMed
Appl Environ Microbiol. 2004 May;70(5):2748-55 PubMed
Appl Environ Microbiol. 2004 Dec;70(12):7210-9 PubMed
Int J Food Microbiol. 2010 Feb 28;137(2-3):230-5 PubMed
Electrophoresis. 2002 Apr;23(7-8):1161-73 PubMed
J Bacteriol. 2008 Jan;190(2):564-70 PubMed
Microb Ecol. 2012 Jan;63(1):12-9 PubMed
Syst Appl Microbiol. 2006 Jul;29(5):375-81 PubMed
Food Microbiol. 2008 Oct;25(7):942-8 PubMed
Lett Appl Microbiol. 2010 Mar;50(3):327-34 PubMed
Curr Microbiol. 2000 Jun;40(6):351-5 PubMed
J Appl Microbiol. 2010 Jan;108(1):285-98 PubMed
Appl Environ Microbiol. 2009 Apr;75(7):2079-90 PubMed
FEMS Microbiol Lett. 2006 Apr;257(1):32-42 PubMed
World J Microbiol Biotechnol. 2010 Jul;26(7):1281-9 PubMed
Appl Microbiol Biotechnol. 2006 Nov;73(2):394-403 PubMed
Proteomics. 2004 Dec;4(12):3665-85 PubMed
Int J Food Microbiol. 2009 Nov 30;136(1):123-8 PubMed
FEMS Microbiol Lett. 2005 May 1;246(1):111-7 PubMed
Appl Environ Microbiol. 2003 May;69(5):2512-20 PubMed
Appl Environ Microbiol. 2009 Nov;75(21):6729-35 PubMed