Plasma levels of aminothiols, nitrite, nitrate, and malondialdehyde in myelodysplastic syndromes in the context of clinical outcomes and as a consequence of iron overload
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24669287
PubMed Central
PMC3942103
DOI
10.1155/2014/416028
Knihovny.cz E-zdroje
- MeSH
- dipeptidy krev MeSH
- dusičnany krev MeSH
- dusitany krev MeSH
- ferritin krev MeSH
- lidé MeSH
- malondialdehyd krev MeSH
- myelodysplastické syndromy krev komplikace patologie MeSH
- oxidace-redukce MeSH
- oxidační stres MeSH
- přetížení železem krev komplikace patologie MeSH
- studie případů a kontrol MeSH
- sulfhydrylové sloučeniny krev MeSH
- výsledek terapie MeSH
- železo krev MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cysteinylglycine MeSH Prohlížeč
- dipeptidy MeSH
- dusičnany MeSH
- dusitany MeSH
- ferritin MeSH
- malondialdehyd MeSH
- sulfhydrylové sloučeniny MeSH
- železo MeSH
The role of oxidative stress in the initiation and progression of myelodysplastic syndromes (MDS) as a consequence of iron overload remains unclear. In this study we have simultaneously quantified plasma low-molecular-weight aminothiols, malondialdehyde, nitrite, and nitrate and have studied their correlation with serum iron/ferritin levels, patient treatment (chelation therapy), and clinical outcomes. We found significantly elevated plasma levels of total, oxidized, and reduced forms of cysteine (P < 0.001), homocysteine (P < 0.001), and cysteinylglycine (P < 0.006) and significantly depressed levels of total and oxidized forms of glutathione (P < 0.03) and nitrite (P < 0.001) in MDS patients compared to healthy donors. Moreover, total (P < 0.032) and oxidized cysteinylglycine (P = 0.029) and nitrite (P = 0.021) differed significantly between the analyzed MDS subgroups with different clinical classifications. Malondialdehyde levels in plasma correlated moderately with both serum ferritin levels (r = 0.78, P = 0.001) and serum free iron levels (r = 0.60, P = 0.001) and were significantly higher in patients with iron overload. The other analyzed compounds lacked correlation with iron overload (represented by serum iron/ferritin levels). For the first time our results have revealed significant differences in the concentrations of plasma aminothiols in MDS patients, when compared to healthy donors. We found no correlation of these parameters with iron overload and suggest the role of oxidative stress in the development of MDS disease.
Zobrazit více v PubMed
Farquhar MJ, Bowen DT. Oxidative stress and the myelodysplastic syndromes. International Journal of Hematology. 2003;77(4):342–350. PubMed
Gattermann N, Rachmilewitz EA. Iron overload in MDS-pathophysiology, diagnosis, and complications. Annals of Hematology. 2011;90(1):1–10. PubMed
Saigo K, Takenokuchi M, Hiramatsu Y, et al. Oxidative stress levels in myelodysplastic syndrome patients: their relationship to serum ferritin and haemoglobin values. Journal of International Medical Research. 2011;39(5):1941–1945. PubMed
Ghoti H, Amer J, Winder A, Rachmilewitz E, Fibach E. Oxidative stress in red blood cells, platelets and polymorphonuclear leukocytes from patients with myelodysplastic syndrome. European Journal of Haematology. 2007;79(6):463–467. PubMed
Cortelezzi A, Cattaneo C, Cristiani S, et al. Non-transferrin-bound iron in myelodysplastic syndromes: a marker of ineffective erythropoiesis? Hematology Journal. 2000;1(3):153–158. PubMed
Cortelezzi A, Fracchiolla NS, Bamonti-Catena F, et al. Hyperhomocysteinemia in myelodysplastic syndromes: specific association with autoimmunity and cardiovascular disease. Leukemia and Lymphoma. 2001;41(1-2):147–150. PubMed
Peddie CM, Wolf CR, Mclellan LI, Collins AR, Bowen DT. Oxidative DNA damage in CD34+ myelodysplastic cells is associated with intracellular redox changes and elevated plasma tumour necrosis factor-α concentration. British Journal of Haematology. 1997;99(3):625–631. PubMed
Choi JW. No significant correlation exists between nitric oxide production and apoptosis in myelodysplastic syndromes. Acta Haematologica. 2003;109(1):50–52. PubMed
Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: origin, link, measurement, mechanisms, and biomarkers. Critical Reviews in Clinical Laboratory Sciences. 2009;46(5-6):241–281. PubMed
Raijmakers MTM, Steegers EAP, Peters WHM. Glutathione S-transferases and thiol concentrations in embryonic and early fetal tissues. Human Reproduction. 2001;16(11):2445–2450. PubMed
Garcia AJ, Apitz-Castro R. Plasma total homocysteine quantification: an improvement of the classical high-performance liquid chromatographic method with fluorescence detection of the thiol-SBD derivatives. Journal of Chromatography B. 2002;779(2):359–363. PubMed
Li H, Meininger CJ, Wu G. Rapid determination of nitrite by reversed-phase high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B. 2000;746(2):199–207. PubMed
Woitzik J, Abromeit N, Schaefer F. Measurement of nitric oxide metabolites in brain microdialysates by a sensitive fluorometric high-performance liquid chromatography assay. Analytical Biochemistry. 2001;289(1):10–17. PubMed
Davies CA, Perrett D, Zhang Z, Nielsen BR, Blake DR, Winyard PG. Simultaneous analysis of nitrite, nitrate and the nicotinamide nucleotides by capillary electrophoresis: application to biochemical studies and human extracellular fluids. Electrophoresis. 1999;20(10):2111–2117. PubMed
Suttnar J, Mášová L, Dyr JE. Influence of citrate and EDTA anticoagulants on plasma malondialdehyde concentrations estimated by high-performance liquid chromatography. Journal of Chromatography B. 2001;751(1):193–197. PubMed
Štikarová J, Suttnar J, Pimková K, Chrastinová-Má Ová L, Ermák J, Dyr JE. Enhanced levels of asymmetric dimethylarginine in a serum of middle age patients with myelodysplastic syndrome. Journal of Hematology and Oncology. 2013;6(1, article 58) PubMed PMC
Moshage H, Kok B, Huizenga JR, Jansen PLM. Nitrite and nitrate determinations in plasma: a critical evaluation. Clinical Chemistry. 1995;41(6):892–896. PubMed
Kleinbongard P, Dejam A, Lauer T, et al. Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radical Biology and Medicine. 2003;35(7):790–796. PubMed
Lauer T, Preik M, Rassaf T, et al. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(22):12814–12819. PubMed PMC
Alusik S, Jedlickova V, Paluch Z, Zecova S. Plasma levels of nitrite/nitrate and inflammation markers in elderly individuals. Bratislavské lekárske listy. 2008;109(7):289–292. PubMed
Mikiwa K, Tadashi I, Kayoko K, et al. Plasma nitrate/nitrite concentration in healthy population and patients with diabetes mellitus: relationships with gender, aging and diabetic complications. Bulletin of the Osaka Medical College. 2002;48:1–6.
Bates CJ, Mansoor MA, Gregory J, Pentieva K, Prentice A. Correlates of plasma homocysteine, cysteine and cysteinyl-glycine in respondents in the British National Diet and Nutrition Survey of young people aged 4-18 years, and a comparison with the survey of people aged 65 years and over. British Journal of Nutrition. 2002;87(1):71–79. PubMed
Modun D, Krnic M, Vukovic J, et al. Plasma nitrite concentration decreases after hyperoxia-induced oxidative stress in healthy humans. Clinical Physiology and Functional Imaging. 2012;32(5):404–408. PubMed
Vermeulen Windsant IC, de Wit NC, Sertorio JT, et al. Blood transfusions increase circulating plasma free hemoglobin levels and plasma nitric oxide consumption: a prospective observational pilot study. Critical Care. 2012;16(3, article R95) PubMed PMC
Dreißigacker U, Suchy M-T, Maassen N, Tsikas D. Human plasma concentrations of malondialdehyde (MDA) and the F2-isoprostane 15(S)-8-iso-PGF2α may be markedly compromised by hemolysis: evidence by GC-MS/MS and potential analytical and biological ramifications. Clinical Biochemistry. 2010;43(1-2):159–167. PubMed
Mayer B, Andrew P. Nitric oxide synthases: catalytic function and progress towards selective inhibition. Naunyn-Schmiedeberg’s Archives of Pharmacology. 1998;358(1):127–133. PubMed
de Chiara B, Sedda V, Parolini M, et al. Plasma total cysteine and cardiovascular risk burden: action and interaction. Scientific World Journal. 2012;2012303654 PubMed PMC
Jacob N, Bruckert E, Giral P, Foglietti MJ, Turpin G. Cysteine is a cardiovascular risk factor in hyperlipidemic patients. Atherosclerosis. 1999;146(1):53–59. PubMed
Müller T, Muhlack S. Cysteinyl-glycine reduction as marker for levodopa-induced oxidative stress in Parkinson’s disease patients. Movement Disorders. 2011;26(3):543–546. PubMed
Passi S, Grandinetti M, Maggio F, Stancato A, De Luca C. Epidermal oxidative stress in vitiligo. Pigment Cell Research. 1998;11(2):81–85. PubMed
De Chiara B, Mafrici A, Campolo J, et al. Low plasma glutathione levels after reperfused acute myocardial infarction are associated with late cardiac events. Coronary Artery Disease. 2007;18(2):77–82. PubMed
Shimizu H, Kiyohara Y, Kato I, et al. Relationship between plasma glutathione levels and cardiovascular disease in a defined population: the Hisayama study. Stroke. 2004;35(9):2072–2077. PubMed
Hanigan MH, Frierson HF, Jr., Swanson PE, De Young BR. Altered expression of gamma-glutamyl transpeptidase in human tumors. Human Pathology. 1999;30(3):300–305. PubMed
Raza A, Galili N, Smith S, et al. Phase 1 multicenter dose-escalation study of ezatiostat hydrochloride (TLK199 tablets), a novel glutathione analog prodrug, in patients with myelodysplastic syndrome. Blood. 2009;113(26):6533–6540. PubMed
Dickinson DA, Forman HJ. Glutathione in defense and signaling: lessons from a small thiol. Annals of the New York Academy of Sciences. 2002;973:488–504. PubMed
Tager M, Ittenson A, Franke A, Frey A, Gassen HG, Ansorge S. γ-glutamyl transpepsidase-cellular expression in populations of normal human mononuclear cells and patients suffering from leukemias. Annals of Hematology. 1995;70(5):237–242. PubMed
Proctor MJ, Talwar D, Balmar SM, et al. The relationship between the presence and site of cancer, an inflammation-based prognostic score and biochemical parameters. Initial results of the Glasgow Inflammation Outcome Study. British Journal of Cancer. 2010;103(6):870–876. PubMed PMC
Diergaarde B, Brand R, Lamb J, et al. Pooling-based genome-wide association study implicates gamma- glutamyltransferase 1 (GGT1) gene in pancreatic carcinogenesis. Pancreatology. 2010;10(2-3):194–200. PubMed PMC
de Donatis GM, Moschini R, Cappiello M, del Corso A, Mura U. Cysteinyl-glycine in the control of glutathione homeostasis in bovine lenses. Molecular Vision. 2010;16:1025–1033. PubMed PMC
Vasikova A, Belickova M, Budinska E, Cermak J. A distinct expression of various gene subsets in CD34+ cells from patients with early and advanced myelodysplastic syndrome. Leukemia Research. 2010;34(12):1566–1572. PubMed
Valent P, Krieger O, Stauder R, et al. Iron overload in myelodysplastic syndromes (MDS): diagnosis, management, and response criteria: A proposal of the Austrian MDS platform. European Journal of Clinical Investigation. 2008;38(3):143–149. PubMed PMC