Global genomic diversity of human papillomavirus 6 based on 724 isolates and 190 complete genome sequences
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
P30CA013330
NCI NIH HHS - United States
P30 AI051519
NIAID NIH HHS - United States
AI-51519
NIAID NIH HHS - United States
CA78527
NCI NIH HHS - United States
R01 CA078527
NCI NIH HHS - United States
U01 CA078527
NCI NIH HHS - United States
P30 CA013330
NCI NIH HHS - United States
PubMed
24741079
PubMed Central
PMC4054425
DOI
10.1128/jvi.00621-14
PII: JVI.00621-14
Knihovny.cz E-resources
- MeSH
- Biological Evolution MeSH
- Cell Lineage MeSH
- Phylogeny MeSH
- Genetic Variation genetics MeSH
- Genome, Viral genetics MeSH
- Genomics methods MeSH
- Genotype MeSH
- Papillomavirus Infections complications genetics virology MeSH
- Humans MeSH
- Human papillomavirus 6 genetics isolation & purification MeSH
- Anus Neoplasms complications genetics virology MeSH
- Uterine Cervical Neoplasms complications genetics virology MeSH
- Head and Neck Neoplasms complications genetics virology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
UNLABELLED: Human papillomavirus type 6 (HPV6) is the major etiological agent of anogenital warts and laryngeal papillomas and has been included in both the quadrivalent and nonavalent prophylactic HPV vaccines. This study investigated the global genomic diversity of HPV6, using 724 isolates and 190 complete genomes from six continents, and the association of HPV6 genomic variants with geographical location, anatomical site of infection/disease, and gender. Initially, a 2,800-bp E5a-E5b-L1-LCR fragment was sequenced from 492/530 (92.8%) HPV6-positive samples collected for this study. Among them, 130 exhibited at least one single nucleotide polymorphism (SNP), indel, or amino acid change in the E5a-E5b-L1-LCR fragment and were sequenced in full. A global alignment and maximum likelihood tree of 190 complete HPV6 genomes (130 fully sequenced in this study and 60 obtained from sequence repositories) revealed two variant lineages, A and B, and five B sublineages: B1, B2, B3, B4, and B5. HPV6 (sub)lineage-specific SNPs and a 960-bp representative region for whole-genome-based phylogenetic clustering within the L2 open reading frame were identified. Multivariate logistic regression analysis revealed that lineage B predominated globally. Sublineage B3 was more common in Africa and North and South America, and lineage A was more common in Asia. Sublineages B1 and B3 were associated with anogenital infections, indicating a potential lesion-specific predilection of some HPV6 sublineages. Females had higher odds for infection with sublineage B3 than males. In conclusion, a global HPV6 phylogenetic analysis revealed the existence of two variant lineages and five sublineages, showing some degree of ethnogeographic, gender, and/or disease predilection in their distribution. IMPORTANCE: This study established the largest database of globally circulating HPV6 genomic variants and contributed a total of 130 new, complete HPV6 genome sequences to available sequence repositories. Two HPV6 variant lineages and five sublineages were identified and showed some degree of association with geographical location, anatomical site of infection/disease, and/or gender. We additionally identified several HPV6 lineage- and sublineage-specific SNPs to facilitate the identification of HPV6 variants and determined a representative region within the L2 gene that is suitable for HPV6 whole-genome-based phylogenetic analysis. This study complements and significantly expands the current knowledge of HPV6 genetic diversity and forms a comprehensive basis for future epidemiological, evolutionary, functional, pathogenicity, vaccination, and molecular assay development studies.
Department of Oncology Division of Cancer Epidemiology McGill University Montréal Québec Canada
Department of Pathology McGill University and Jewish General Hospital Montréal Québec Canada
Department of Pediatrics Albert Einstein College of Medicine New York New York USA
DNA Laboratories Sdn Bhd UKM MTDC Technology Centre Universti Kebangsaan Malaysia Bangi Malaysia
Ganshintetsu Memorial Laboratory Department of Virology 2 National Institute of Health Tokyo Japan
Lausanne University Hospital Institute of Microbiology Lausanne Switzerland
Queen's Cancer Research Institute Queen's University Kingston Ontario Canada
See more in PubMed
Bernard HU, Burk RD, Chen Z, van Doorslaer K, zur Hausen H, de Villiers EM. 2010. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401:70–79. 10.1016/j.virol.2010.02.002 PubMed DOI PMC
Aubin F, Prétet JL, Jacquard AC, Saunier M, Carcopino X, Jaroud F, Pradat P, Soubeyrand B, Leocmach Y, Mougin C, Riethmuller D. 2008. Human papillomavirus genotype distribution in external acuminata condylomata: a large French national study (EDiTH IV). Clin. Infect. Dis. 47:610–615. 10.1086/590560 PubMed DOI
Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, Benbrahim-Tallaa L, Guha N, Freeman C, Galichet L, Cogliano V. 2009. A review of human carcinogens. Part B: biological agents. Lancet Oncol. 10:321–322. 10.1016/S1470-2045(09)70096-8 PubMed DOI
Garland SM, Steben M, Sings HL, James M, Lu S, Railkar R, Barr E, Haupt RM, Joura EA. 2009. Natural history of genital warts: analysis of the placebo arm of 2 randomized phase III trials of a quadrivalent human papillomavirus (types 6, 11, 16, and 18) vaccine. J. Infect. Dis. 199:805–814. 10.1086/597071 PubMed DOI
Komloš KF, Kocjan BJ, Košorok P, Luzar B, Meglič L, Potočnik M, Hočevar-Boltežar I, Gale N, Seme K, Poljak M. 2012. Tumor-specific and gender-specific pre-vaccination distribution of human papillomavirus types 6 and 11 in anogenital warts and laryngeal papillomas: a study on 574 tissue specimens. J. Med. Virol. 84:1233–1241. 10.1002/jmv.23318 PubMed DOI
Cubie HA. 2013. Diseases associated with human papillomavirus infection. Virology 445:21–34. 10.1016/j.virol.2013.06.007 PubMed DOI
Cornall AM, Roberts JM, Garland SM, Hillman RJ, Grulich AE, Tabrizi SN. 2013. Anal and perianal squamous carcinomas and high-grade intraepithelial lesions exclusively associated with “low-risk” HPV genotypes 6 and 11. Int. J. Cancer 133:2253–2258. 10.1002/ijc.28228 PubMed DOI
Insinga RP, Liaw KL, Johnson LG, Madeleine MM. 2008. A systematic review of the prevalence and attribution of human papillomavirus types among cervical, vaginal, and vulvar precancers and cancers in the United States. Cancer Epidemiol. Biomarkers Prev. 17:1611–1622. 10.1158/1055-9965.EPI-07-2922 PubMed DOI PMC
Miralles-Guri C, Bruni L, Cubilla AL, Castellsague X, Bosch FX, de Sanjosé S. 2009. Human papillomavirus prevalence and type distribution in penile carcinoma. J. Clin. Pathol. 62:870–878. 10.1136/jcp.2008.063149 PubMed DOI
Huebbers CU, Preuss SF, Kolligs J, Vent J, Stenner M, Wieland U, Silling S, Drebber U, Speel EJ, Klussmann JP. 2013. Integration of HPV6 and downregulation of AKR1C3 expression mark malignant transformation in a patient with juvenile-onset laryngeal papillomatosis. PLoS One 8:e57207. 10.1371/journal.pone.0057207 PubMed DOI PMC
Bzhalava D, Guan P, Franceschi S, Dillner J, Clifford G. 2013. A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology 445:224–231. 10.1016/j.virol.2013.07.015 PubMed DOI
Kiatpongsan S, Campos NG, Kim JJ. 2012. Potential benefits of second-generation human papillomavirus vaccines. PLoS One 7:e48426. 10.1371/journal.pone.0048426 PubMed DOI PMC
Combrinck CE, Seedat RY, Randall C, Roodt Y, Burt FJ. 2012. Novel HPV-6 variants of human papillomavirus causing recurrent respiratory papillomatosis in southern Africa. Epidemiol. Infect. 140:1095–1101. 10.1017/S0950268811001580 PubMed DOI
Danielewski JA, Garland SM, McCloskey J, Hillman RJ, Tabrizi SN. 2013. Human papillomavirus type 6 and 11 genetic variants found in 71 oral and anogenital epithelial samples from Australia. PLoS One 8:e63892. 10.1371/journal.pone.0063892 PubMed DOI PMC
de Matos RP, Sichero L, Mansur IM, do Bonfim CM, Bittar C, Nogueira RL, Küpper DS, Valera FC, Nogueira ML, Villa LL, Calmon MF, Rahal P. 2013. Nucleotide and phylogenetic analysis of human papillomavirus types 6 and 11 isolated from recurrent respiratory papillomatosis in Brazil. Infect. Genet. Evol. 16:282–289. 10.1016/j.meegid.2012.12.033 PubMed DOI
Heinzel PA, Chan SY, Ho L, O'Connor M, Balaram P, Campo MS, Fujinaga K, Kiviat N, Kuypers J, Pfister H. 1995. Variation of human papillomavirus type 6 (HPV-6) and HPV-11 genomes sampled throughout the world. J. Clin. Microbiol. 33:1746–1754 PubMed PMC
Kocjan BJ, Jelen MM, Maver PJ, Seme K, Poljak M. 2011. Pre-vaccination genomic diversity of human papillomavirus genotype 6 (HPV 6): a comparative analysis of 21 full-length genome sequences. Infect. Genet. Evol. 11:1805–1810. 10.1016/j.meegid.2011.06.022 PubMed DOI
Kocjan BJ, Poljak M, Cimerman M, Gale N, Potočnik M, Bogovac Ž, Seme K. 2009. Prevaccination genomic diversity of human papillomavirus genotype 6 (HPV 6). Virology 391:274–283. 10.1016/j.virol.2009.06.030 PubMed DOI
Burk RD, Chen Z, Harari A, Smith BC, Kocjan BJ, Maver PJ, Poljak M. 2011. Classification and nomenclature system for human Alphapapillomavirus variants: general features, nucleotide landmarks and assignment of HPV6 and HPV11 isolates to variant lineages. Acta Dermatovenerol. Alp. Panonica Adriat. 20:113–123 http://www.zsd.si/ACTA/PUBLIC_HTML/acta-apa-11-3/2.pdf PubMed PMC
Platt AR, Woodhall RW, George AL., Jr 2007. Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 43:58, 60, 62. 10.2144/000112499 PubMed DOI
Kocjan BJ, Gale N, Hočevar Boltežar I, Seme K, Fujs Komloš K, Hošnjak L, Maver PJ, Jelen MM, Zupanič Pajnič I, Balažic J, Poljak M. 2013. Identical human papillomavirus (HPV) genomic variants persist in recurrent respiratory papillomatosis for up to 22 years. J. Infect. Dis. 207:583–587. 10.1093/infdis/jis733 PubMed DOI
Ure AE, Forslund O. 2012. Lack of methylation in the upstream region of human papillomavirus type 6 from aerodigestive tract papillomas. J. Virol. 86:13790–13794. 10.1128/JVI.01938-12 PubMed DOI PMC
Katoh K, Toh H. 2010. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. 10.1093/bioinformatics/btq224 PubMed DOI PMC
Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers. Syst. Biol. 57:758–771. 10.1080/10635150802429642 PubMed DOI
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214. 10.1186/1471-2148-7-214 PubMed DOI PMC
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28:2731–2739. 10.1093/molbev/msr121 PubMed DOI PMC
Maddison DR, Maddison WP. 2005. MacClade 4: analysis of phylogeny and character evolution, version 4.08a. http://macclade.org/index.html PubMed
Smith B, Chen Z, Reimers L, van Doorslaer K, Schiffman M, Desalle R, Herrero R, Yu K, Wacholder S, Wang T, Burk RD. 2011. Sequence imputation of HPV16 genomes for genetic association studies. PLoS One 6:e21375. 10.1371/journal.pone.0021375 PubMed DOI PMC
Chen Z, Schiffman M, Herrero R, DeSalle R, Anastos K, Segondy M, Sahasrabuddhe VV, Gravitt PE, Hsing AW, Burk RD. 2013. Evolution and taxonomic classification of alphapapillomavirus 7 complete genomes: HPV18, HPV39, HPV45, HPV59, HPV68 and HPV70. PLoS One 8:e72565. 10.1371/journal.pone.0072565 PubMed DOI PMC
Chen Z, Schiffman M, Herrero R, Desalle R, Anastos K, Segondy M, Sahasrabuddhe VV, Gravitt PE, Hsing AW, Burk RD. 2011. Evolution and taxonomic classification of human papillomavirus 16 (HPV16)-related variant genomes: HPV31, HPV33, HPV35, HPV52, HPV58 and HPV67. PLoS One 6:e20183. 10.1371/journal.pone.0020183 PubMed DOI PMC
Ho L, Chan SY, Burk RD, Das BC, Fujinaga K, Icenogle JP, Kahn T, Kiviat N, Lancaster W, Mavromara-Nazos P. 1993. The genetic drift of human papillomavirus type 16 is a means of reconstructing prehistoric viral spread and the movement of ancient human populations. J. Virol. 67:6413–6423 PubMed PMC
Ong CK, Chan SY, Campo MS, Fujinaga K, Mavromara-Nazos P, Labropoulou V, Pfister H, Tay SK, ter Meulen J, Villa LL. 1993. Evolution of human papillomavirus type 18: an ancient phylogenetic root in Africa and intratype diversity reflect coevolution with human ethnic groups. J. Virol. 67:6424–6431 PubMed PMC
Chen Z, Terai M, Fu L, Herrero R, DeSalle R, Burk RD. 2005. Diversifying selection in human papillomavirus type 16 lineages based on complete genome analyses. J. Virol. 79:7014–7023. 10.1128/JVI.79.11.7014-7023.2005 PubMed DOI PMC
Sichero L, Ferreira S, Trottier H, Duarte-Franco E, Ferenczy A, Franco EL, Villa LL. 2007. High grade cervical lesions are caused preferentially by non-European variants of HPVs 16 and 18. Int. J. Cancer 120:1763–1768. 10.1002/ijc.22481 PubMed DOI
Bernard HU, Calleja-Macias IE, Dunn ST. 2006. Genome variation of human papillomavirus types: phylogenetic and medical implications. Int. J. Cancer 118:1071–1076. 10.1002/ijc.21655 PubMed DOI