Subcellular preservation in giant ostracod sperm from an early Miocene cave deposit in Australia
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24827442
PubMed Central
PMC4046408
DOI
10.1098/rspb.2014.0394
PII: rspb.2014.0394
Knihovny.cz E-zdroje
- Klíčová slova
- Cypridoidea, bat guano, fossil gametes, soft body preservation, synchrotron radiation tomography,
- MeSH
- biologická evoluce MeSH
- jeskyně * MeSH
- korýši ultrastruktura MeSH
- mikroskopie elektronová rastrovací MeSH
- rentgenová mikrotomografie MeSH
- spermie ultrastruktura MeSH
- transmisní elektronová mikroskopie MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Austrálie MeSH
- Queensland MeSH
Cypridoidean ostracods are one of a number of animal taxa that reproduce with giant sperm, up to 10 000 µm in length, but they are the only group to have aflagellate, filamentous giant sperm. The evolution and function of this highly unusual feature of reproduction with giant sperm are currently unknown. The hypothesis of long-term evolutionary persistence of this kind of reproduction has never been tested. We here report giant sperm discovered by propagation phase contrast X-ray synchrotron micro- and nanotomography, preserved in five Miocene ostracod specimens from Queensland, Australia. The specimens belong to the species Heterocypris collaris Matzke-Karasz et al. 2013 (one male and three females) and Newnhamia mckenziana Matzke-Karasz et al. 2013 (one female). The sperm are not only the oldest petrified gametes on record, but include three-dimensional subcellular preservation. We provide direct evidence that giant sperm have been a feature of this taxon for at least 16 Myr and provide an additional criterion (i.e. longevity) to test hypotheses relating to origin and function of giant sperm in the animal kingdom. We further argue that the highly resistant, most probably chitinous coats of giant ostracod sperm may play a role in delaying decay processes, favouring early mineralization of soft tissue.
Department of Zoology Faculty of Science Charles University Viničná 7 12844 Praha Czech Republic
European Synchrotron Radiation Facility 38043 Grenoble France
Zobrazit více v PubMed
Pitnick S, Hosken DJ, Birkhead TR. 2009. Sperm morphological diversity. In Sperm biology, an evolutionary perspective (eds Birkhead TR, Hosken DJ, Pitnick S.), pp. 69–149. Amsterdam, The Netherlands: Elsevier.
Bauer H. 1940. Über die Chromosomen der bisexuellen und der parthenogenetischen Rasse des Ostracoden DOI
Matzke-Karasz R. 2005. Giant spermatozoon coiled in small egg: fertilization mechanisms and their implications for evolutionary studies on Ostracoda (Crustacea). J. Exp. Zool. Part B 304, 129–149. ( 10.1002/jez.b.21031) PubMed DOI
Wingstrand KG. 1988. Comparative spermatology of the Crustacea Entomostraca. 2. Subclass Ostracoda. Biol. Skr. Dan. Vid. Sel. 32, 1–149.
Lowndes AG. 1935. The sperms of freshwater ostracods. Proc. Zool. Soc. Lond. 1935, 35–48. ( 10.1111/j.1469-7998.1935.tb06231.x) DOI
Gupta BL. 1968. Aspects of motility in the non-flagellate spermatozoa of freshwater ostracods. In Aspects of cell motility (ed. Miller PL.). PubMed
Smith RJ. 2000. Morphology and ontogeny of Cretaceous ostracods with preserved appendages from Brazil. Palaeontology 43, 63–68. ( 10.1111/1475-4983.00119) DOI
Matzke-Karasz R, Horne DC, Janz H, Griffiths HI, Hutchinson WF, Preece RC. 2001. 5,000 year-old spermatozoa in Quaternary Ostracoda (Crustacea). Naturwissenschaften 88, 268–272. ( 10.1007/s001140100234) PubMed DOI
Matzke-Karasz R, Smith RJ, Symonova R, Miller CG, Tafforeau P. 2009. Sexual intercourse involving giant sperm in Cretaceous ostracode. Science 324, 1535 ( 10.1126/science.1173898) PubMed DOI
Siveter DJ, Sutton MD, Briggs DEG, Siveter DJ. 2003. An ostracode crustacean with soft parts from the Lower Silurian. Science 302, 1749–1751. ( 10.1126/science.1091376) PubMed DOI
Siveter DJ, Siveter DJ, Sutton MD, Briggs DEG. 2007. Brood care in a Silurian ostracod. Proc. R. Soc. B 274, 465–469. ( 10.1098/rspb.2006.3756) PubMed DOI PMC
Siveter DJ, Briggs DEG, Siveter DJ, Sutton MD, Joomun SC. 2013. A Silurian myodocope with preserved soft-parts: cautioning the interpretation of the shell-based ostracod record. Proc. R. Soc. B 280, 1471–2954. ( 10.1098/rspb.2012.2664) PubMed DOI PMC
Keyser D, Weitschat W. 2005. First record of ostracods (Crustacea) in Baltic amber. Hydrobiologia 538, 107–114. ( 10.1007/s10750-004-5941-5) DOI
Williams M, Siveter DJ, Ashworth AC, Wilby PR, Horne DJ, Lewis AR, Marchant DR. 2008. Exceptionally preserved lacustrine ostracods from the Middle Miocene of Antarctica: implications for high-latitude palaeoenvironment at 77° south. Proc. R. Soc. B 275, 2449–2454. ( 10.1098/rspb.2008.0396) PubMed DOI PMC
Wilkinson IP, Wilby PR, Williams M, Siveter DJ, Page AA, Leggitt L, Riley DA. 2010. Exceptionally preserved ostracodes from a Middle Miocene palaeolake, California, USA. J. Geol. Soc. Lond. 167, 817–825. ( 10.1144/0016-76492009-178) DOI
Nordqvist O. 1885. Beitrag zur Kenntniss der inneren männlichen Geschlechtsorgane der Cypriden. Act. Soc. Sci. Fenn. 15, 129–168.
Iepure S, Namiotko T, Valdecasas AG, Magyari EK. 2012. Exceptionally well-preserved giant spermatozoa in male and female specimens of an ostracod PubMed DOI
Poinar G. 2000. First fossil record of stalked spermatophores with sperm (Collembola: Hexapoda). Hist. Biol. 14, 229–234. ( 10.1080/10292380009380570) DOI
Hand SJ, Archer M. 2005. A new hipposiderid genus (Microchiroptera) from an Early Miocene bat community in Australia. Palaeontology 48, 371–383. ( 10.1111/j.1475-4983.2005.00444.x) DOI
Archer M, Hand SJ, Godthelp H. 1994. Riversleigh: the story of animals in ancient rainforests of inland Australia. Sydney, Australia: Reed Books.
Paganin D, Mayo SC, Gureyev TE, Miller R. 2002. Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object. J. Microsc. 206, 33–40. ( 10.1046/j.1365-2818.2002.01010.x) PubMed DOI
Langer M, Pacureanu A, Suhonen H, Grimal Q, Cloetens P, Peyrin F. 2012. X-Ray phase nanotomography resolves the 3D human bone ultrastructure. PLoS ONE 7, e35691 ( 10.1371/journal.pone.0035691) PubMed DOI PMC
Yamada S, Matzke-Karasz R. 2012. How is a giant sperm ejaculated? Anatomy and function of the sperm pump, or ‘Zenker organ’, in PubMed DOI
Matzke-Karasz R, Neil JV, Smith RJ, Godthelp H, Archer M, Hand SJ. 2013. Ostracods (Crustacea) with soft part preservation from Miocene cave deposits of the Riversleigh World Heritage Area, NW Queensland, Australia. J. Syst. Palaeontol. 11, 789–819. ( 10.1080/14772019.2012.760007) DOI
Thomas DB, McGoverin CM, Fordyce RE, Frew RD, Gordon KC. 2011. Raman spectroscopy of fossil bioapatite: a proxy for diagenetic alteration of the oxygen isotope composition. Palaeogeogr. Palaeocol. 310, 62–70. ( 10.1016/j.palaeo.2011.06.016) DOI
Ozerov IA, Zhinkina NA, Efimov AM, Machs EM, Rodionov AV. 2006. Feulgen-positive staining of the cell nuclei in fossilized leaf and fruit tissues of the Lower Eocene Myrtaceae. Bot. J. Linn. Soc. 150, 315–321. ( 10.1111/j.1095-8339.2006.00471.x) DOI
Bomfleur B, McLoughlin S, Vajda V. 2014. Fossilized nuclei and chromosomes reveal 180 million years of genomic stasis in royal ferns. Science 343, 1376–1377. ( 10.1126/science.1249884) PubMed DOI
Taylor TN, Millay MA. 1977. Structurally preserved fossil cell contents. Trans. Am. Microsc. Soc. 96, 390–393. ( 10.2307/3225870) DOI
Li CW, Chen JY, Hua TE. 1998. Precambrian sponges with cellular structures. Science 279, 879–882. ( 10.1126/science.279.5352.879) PubMed DOI
Schopf JM. 1975. Modes of fossil preservation. Rev. Palaeobot. Palynol. 20, 27–53. ( 10.1016/0034-6667(75)90005-6) DOI
Voigt E. 1935. Die Erhaltung von Epithelzellen mit Zellkernen, von Chromatophoren und Corium in fossiler Froschhaut aus der mitteleozänen Braunkohle des Geiseltales. Nova Act. L. C. NF 3, 340–360.
Voigt E. 1988. Preservation of soft tissues in the Eocene lignite of the Geiseltal near Halle/S. Cour. Forsch. Senck. 107, 325–343.
Martill DM. 1990. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature 346, 171–172. ( 10.1038/346171a0) DOI
Huldtgren T, Cunningham J, Yin C, Stampanoni M, Marone F, Donoghue PCJ, Bengtson S. 2011. Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as encysting protists. Science 334, 1696–1699. ( 10.1126/science.1209537) PubMed DOI
Schiffbauer JD, Xiao S, Sharma KS, Wang G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology 40, 223–226. ( 10.1130/G32546.1) DOI
Pitnick S, Markow TA, Spicer GS. 1995. Delayed male maturity is a cost of producing large sperm in PubMed DOI PMC
Miller GT, Pitnick S. 2002. Sperm–female co-evolution in PubMed DOI