The up-regulation of elongation factors in the barley leaf and the down-regulation of nucleosome assembly genes in the crown are both associated with the expression of frost tolerance
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- down regulace MeSH
- ječmen (rod) genetika metabolismus MeSH
- listy rostlin genetika metabolismus MeSH
- mapování chromozomů MeSH
- nukleozomy genetika metabolismus MeSH
- reakce na chladový šok MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- transkripční elongační faktory genetika metabolismus MeSH
- transkriptom MeSH
- upregulace MeSH
- zmrazování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleozomy MeSH
- rostlinné proteiny MeSH
- transkripční elongační faktory MeSH
We report a series of microarray-based leaf and crown transcriptome comparisons involving three barley cultivars (cvs. Luxor, Igri and Atlas 68) which express differing degrees of frost tolerance. The transcripts were obtained following the exposure of seedlings to low (above and below zero) temperatures, aiming to identify those genes and signalling/metabolic pathways which are associated with frost tolerance. Both the leaves and the crowns responded to low temperature by the up-regulation of a suite of abscisic acid (ABA)-responsive genes, most of which have already been recognized as components of the plant low temperature response. The inter-cultivar comparison indicated that genes involved in maintaining the leaf's capacity to synthesize protein and to retain chloroplast activity were important for the expression of frost tolerance. In the crown, the repression of genes associated with nucleosome assembly and transposon regulation were the most relevant transcriptional changes associated with frost tolerance, highlighting the role of gene repression in the cold acclimation response.
Zobrazit více v PubMed
Nucleic Acids Res. 2004 Oct 14;32(18):5539-45 PubMed
Plant Cell. 2001 Jul;13(7):1541-54 PubMed
Plant Physiol. 2008 May;147(1):381-90 PubMed
Trends Plant Sci. 2004 Aug;9(8):399-405 PubMed
Plant Physiol. 1994 Dec;106(4):1615-21 PubMed
Biochem J. 2005 May 15;388(Pt 1):151-7 PubMed
Plant Physiol. 1995 Apr;107(4):1177-1185 PubMed
Cryobiology. 2007 Apr;54(2):154-63 PubMed
J Exp Bot. 2010 Jun;61(10):2615-22 PubMed
Plant J. 2005 Jan;41(2):195-211 PubMed
BMC Genomics. 2009 Dec 04;10:582 PubMed
PLoS One. 2013;8(1):e52757 PubMed
Gene. 2005 Dec 19;363:77-84 PubMed
Curr Opin Plant Biol. 2001 Dec;4(6):527-32 PubMed
Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):15354-61 PubMed
Plant Cell. 2002 Aug;14(8):1675-90 PubMed
Biol Res. 2011;44(1):75-80 PubMed
Mol Gen Genet. 1992 Jul;234(1):43-8 PubMed
Plant Physiol. 2004 Mar;134(3):960-8 PubMed
Proc Natl Acad Sci U S A. 2006 Dec 19;103(51):19587-92 PubMed
Plant Mol Biol. 2005 Nov;59(4):533-51 PubMed
Proc Natl Acad Sci U S A. 2010 Sep 7;107(36):15986-91 PubMed
FEBS Lett. 2004 Jul 2;569(1-3):327-31 PubMed
Theor Appl Genet. 2007 Nov;115(8):1083-91 PubMed
Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599 PubMed
Plant J. 2008 Jan;53(1):11-28 PubMed
Plant J. 2012 Nov;72(3):436-49 PubMed
Mol Genet Genomics. 2010 Apr;283(4):351-63 PubMed
Plant Physiol. 1992 Oct;100(2):593-6 PubMed
Plant Cell. 2002;14 Suppl:S165-83 PubMed
Cell Res. 2006 Jun;16(6):599-608 PubMed
BMC Plant Biol. 2009 Mar 23;9:34 PubMed
Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3985-90 PubMed
Trends Plant Sci. 2008 Dec;13(12):619-23 PubMed
Planta. 2011 Sep;234(3):565-77 PubMed
Plant Physiol. 2006 May;141(1):257-70 PubMed
Plant Physiol. 2005 Nov;139(3):1217-33 PubMed
Planta. 2007 Dec;227(1):233-43 PubMed
FEBS Lett. 2006 Jul 24;580(17):4218-23 PubMed
Plant Signal Behav. 2010 Oct;5(10):1167-70 PubMed
Plant J. 2008 Apr;54(1):15-29 PubMed
Plant Physiol. 2008 Jul;147(3):1251-63 PubMed
J Exp Bot. 2013 Apr;64(6):1755-67 PubMed
J Exp Bot. 2007;58(15-16):4333-46 PubMed
J Proteomics. 2008 Oct 7;71(4):391-411 PubMed
Planta. 2010 Aug;232(3):567-78 PubMed
Plant Cell Physiol. 2011 Jan;52(1):96-111 PubMed
Curr Opin Plant Biol. 2000 Jun;3(3):217-23 PubMed
Mol Biol Rep. 2013 Mar;40(3):2723-32 PubMed
PLoS One. 2011;6(8):e23776 PubMed
Plant Biotechnol J. 2010 Sep;8(7):749-71 PubMed
BMC Plant Biol. 2010 Apr 19;10:70 PubMed
Funct Integr Genomics. 2008 Nov;8(4):387-405 PubMed
Plant Cell Environ. 2007 Apr;30(4):388-98 PubMed
Plant Mol Biol. 2001 Apr;45(6):691-703 PubMed
Plant Physiol. 1997 Jun;114(2):467-474 PubMed
Theor Appl Genet. 2013 Feb;126(2):335-47 PubMed
Plant Mol Biol. 2001 Feb;45(3):327-40 PubMed
Cold Spring Harb Perspect Biol. 2012 Oct 01;4(10): PubMed
Mol Genet Genomics. 2013 Nov;288(11):639-49 PubMed
J Exp Bot. 2006;57(14):3601-18 PubMed
Mol Plant. 2013 Jul;6(4):1274-1289 PubMed
BMC Plant Biol. 2007 Jul 13;7:37 PubMed
Plant Signal Behav. 2008 Jan;3(1):72-3 PubMed
Plant Physiol. 1993 Oct;103(2):371-377 PubMed
PLoS One. 2013;8(1):e53378 PubMed
Proc Natl Acad Sci U S A. 2002 May 28;99(11):7786-91 PubMed
Funct Integr Genomics. 2009 Nov;9(4):513-23 PubMed
New Phytol. 2009;184(1):99-113 PubMed
Plant Cell Environ. 2009 Jul;32(7):917-27 PubMed
Plant Cell. 2006 Jan;18(1):104-18 PubMed
Funct Integr Genomics. 2011 Jun;11(2):307-25 PubMed
Stat Appl Genet Mol Biol. 2004;3:Article3 PubMed
Plant Cell. 2004 Feb;16(2):353-66 PubMed
Mol Genet Genomics. 2008 Sep;280(3):249-61 PubMed
Mol Genet Genomics. 2009 Aug;282(2):141-52 PubMed
Plant Physiol. 1989 Feb;89(2):577-85 PubMed
Cell. 2010 Jan 8;140(1):136-47 PubMed
Mol Biol Rep. 2013 Mar;40(3):2633-44 PubMed
J Plant Physiol. 2008 Jul 31;165(11):1142-51 PubMed