Effects of cyhalothrin-based pesticide on early life stages of common carp (Cyprinus carpio L.)

. 2014 ; 2014 () : 107373. [epub] 20140422

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24860807

The effects of Nexide (a.i. gamma-cyhalothrin 60 g L(-1)) on cumulative mortality, growth indices, and ontogenetic development of embryos and larvae of common carp (Cyprinus carpio L.) were studied. Levels of oxidative stress parameters glutathione reductase (GR), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation were determined. Eggs of newly fertilised common carp were exposed to Nexide at concentrations 5, 25, 50, 100, and 250 μ g L(-1) (0.3, 1.5, 3, 6, and 15 μ g L(-1) gamma-cyhalothrin). All organisms exposed to concentrations higher than 50 μ g L(-1) died soon after hatching; at 25 μ g L(-1), 95% mortality was recorded. Larvae exposed to 5 μ g L(-1) showed significantly lower growth and retarded ontogenetic development compared to control. Histological examination of the livers of larvae from the exposed group revealed dystrophic changes. The value of detoxification enzyme GST of organisms from the exposed group was significantly higher compared to the control and the value of defensive enzyme GPx was significantly lower compared to the control. The results of our investigation confirmed that contamination of aquatic environment by pesticides containing cyhalothrin may impair growth and development of early life stages of carp and cause disbalance of defensive enzymes.

Zobrazit více v PubMed

Hill IR. Effects on non target organisms in terrestrial and aquatic environments. In: Leahey JP, editor. The Pyrethroid Insecticides. London, UK: Taylor and Francis Group; 1985. pp. 162–181.

Sibley PK, Kaushik NK. Toxicity of microencapsulated permethrin to selected nontarget aquatic invertebrates. Archives of Environmental Contamination and Toxicology. 1991;20(2):168–176. PubMed

Bradbury SP, Coats JR. Comparative toxicology of the pyrethroid insecticides. Reviews of Environmental Contamination and Toxicology. 1989;108:133–177. PubMed

Bradbury SP, Coats JR. Toxicokinetics and toxicodynamics of pyrethroid insecticides in fish. Environmental Toxicology and Chemistry. 1989;8(5):373–380.

Hayes AW. Principles and Methods of Toxicology. New York, NY, USA: Raven Press; 1994.

Burr SA, Ray DE. Structure-activity and interaction effects of 14 different pyrethroids on voltage-gated chloride ion channels. Toxicological Sciences. 2004;77(2):341–346. PubMed

Modra H, Svoboda M, Suchy P. Poisoning of dogs and cats. In: Svobodova Z, editor. Veterinary Toxicology in Clinical Practice. Praha, Czech Republic: Profi Press; 2008. pp. 32–33.

Xu C, Wang J, Liu W, Sheng GD, Tu Y, Ma Y. Separation and aquatic toxicity of enantiomers of the pyrethroid insecticide lambda-cyhalothrin. Environmental Toxicology and Chemistry. 2008;27(1):174–181. PubMed

Giddings JM, Barber I, Warren-Hicks W. Comparative aquatic toxicity of the pyrethroid insecticide lambda-cyhalothrin and its resolved isomer gamma-cyhalothrin. Ecotoxicology. 2009;18(2):239–249. PubMed

Kocour M, Gela D, Rodina M, Linhart O. Testing of performance in common carp Cyprinus carpio L. under pond husbandry conditions I: top-crossing with Northern mirror carp. Aquaculture Research. 2005;36(12):1207–1215.

Guideline for Testing of Chemicals. Test No. 210: Fish, Early-Life Stage Toxicity Test. 1992.

Penaz M, Prokes M, Kouril J, Hamackova J. Early development of the carp, Cyprinus carpio . Acta Scientiarum Naturalium Universita. 1983;17:1–39.

Smith PK, Krohn RI, Hermanson GT. Measurement of protein using bicinchoninic acid. Analytical Biochemistry. 1985;150(1):76–85. PubMed

Habig WH, Pabst MJ, Jakoby WB. Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry. 1974;249(22):7130–7139. PubMed

Carlberg I, Mannervik B. Purification and characterization of the flavoenzyme glutathione reductase from rat liver. Journal of Biological Chemistry. 1975;250(14):5475–5480. PubMed

Flohe L, Gunzler WA. Assays of glutathione peroxidase. Methods in Enzymology. 1984;105:114–121. PubMed

Aebi H. Catalase in vitro. Methods in Enzymology. 1984;105:121–126. PubMed

Lushchak VI, Bagnyukova TV, Lushchak OV, Storey JM, Storey KB. Hypoxia and recovery perturb free radical processes and antioxidant potential in common carp (Cyprinus carpio) tissues. International Journal of Biochemistry and Cell Biology. 2005;37(6):1319–1330. PubMed

Kocourek V, Hajslova J. Methods for Determination of Contaminants in Food-Laboratory Manual I. Bratislava, Slovakia: Středisko Technických Informací Potravinářského Průmyslu, Výzkumný Ústav Potravinářského Průmyslu Praha, Praha, Czech Republic; Výskumný Ústav Potravinársky; 1989.

Werner I, Moran K. Effects of pyrethroid insecticides on aquatic organisms. In: Gan J, Spurlock F, Hendley P, Weston DP, editors. Synthetic Pyrethroids: Occurrence and Behavior in Aquatic Environments. Vol. 991. Washington, DC, USA: American Chemical Society; 2008. pp. 310–335. (ACS Symposium Series).

Khan RA. Stress-related bioindicator anomalies in feral male winter flounder (Pleuronectes americanus) exposed to effluent from two pulp and paper mills in Newfoundland. Bulletin of Environmental Contamination and Toxicology. 2003;70(2):401–407. PubMed

Ensibi C, Perez-Lopez M, Rodriguez FS, Miguez-Santiyan MP, Yahya MND, Hernandez-Moreno D. Effects of deltamethrin on biometric parameters and liver biomarkers in common carp (Cyprinus carpio L.) Environmental Toxicology and Pharmacology. 2013;36(2):384–391. PubMed

Maund SJ, Hamer MJ, Warinton JS, Kedwards TJ. Aquatic ecotoxicology of the pyrethroid insecticide lambda-cyhalothrin: considerations for higher-tier aquatic risk assessment. Pesticide Science. 1998;54(4):408–417.

Piner P, Üner N. Oxidative and apoptotic effects of lambda-cyhalothrin modulated by piperonyl butoxide in the liver of Oreochromis niloticus . Environmental Toxicology and Pharmacology. 2012;33(3):414–420. PubMed

Yonar ME. Protective effect of lycopene on oxidative stress and antioxidant status in Cyprinus carpio during cypermethrin exposure. Environmental Toxicology. 2013;28(11):609–616. PubMed

Üner N, Oruç EÖ, Sevgiler Y, Şahin N, Durmaz H, Usta D. Effects of diazinon on acetylcholinesterase activity and lipid peroxidation in the brain of Oreochromis niloticus . Environmental Toxicology and Pharmacology. 2006;21(3):241–245. PubMed

Lushchak VI. Environmentally induced oxidative stress in aquatic animals. Aquatic Toxicology. 2011;101(1):13–30. PubMed

Stara A, Machova J, Velisek J. Effect of chronic exposure to simazine on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Environmental Toxicology and Pharmacology. 2012;33(2):334–343. PubMed

Stara A, Kristan J, Zuskova E, Velisek J. Effect of chronic exposure to prometryne on oxidative stress and antioxidant response in common carp (Cyprinus carpio L.) Pesticide Biochemistry and Physiology. 2013;105(1):18–23. PubMed

El-Demerdash FM. Lambda-cyhalothrin-induced changes in oxidative stress biomarkers in rabbit erythrocytes and alleviation effect of some antioxidants. Toxicology in Vitro. 2007;21(3):392–397. PubMed

Fetoui H, Garoui EM, Makni-ayadi F, Zeghal N. Oxidative stress induced by lambda-cyhalothrin (LTC) in rat erythrocytes and brain: attenuation by vitamin C. Environmental Toxicology and Pharmacology. 2008;26(2):225–231. PubMed

Köprücü K, Aydin R. The toxic effects of pyrethroid deltamethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Pesticide Biochemistry and Physiology. 2004;80(1):47–53.

Aydin R, Köprücü K, Dörücü M, Köprücü SŞ, Pala M. Acute toxicity of synthetic pyrethroid cypermethrin on the common carp (Cyprinus carpio L.) embryos and larvae. Aquaculture International. 2005;13(5):451–458.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...