Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
24876253
PubMed Central
PMC4079375
DOI
10.1105/tpc.114.126607
PII: tpc.114.126607
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
DNA double-strand break (DSB) repair mechanisms differ in their requirements for a homologous repair template and in the accuracy of the result. We aimed to quantify the outcome of repair of a single targeted DSB in somatic cells of young barley (Hordeum vulgare) plants. Amplicon sequencing of three reporter constructs revealed 47 to 58% of reads as repaired via nonhomologous end-joining (NHEJ) with deletions and/or small (1 to 3 bp) insertions. Alternative NHEJ revealed 2 to 5 bp microhomology (15.7% of cases) or new replication-mediated short duplications at sealed breaks. Although deletions outweigh insertions in barley, this bias was less pronounced and deleted sequences were shorter than in Arabidopsis thaliana. Between 17 and 33% of reads likely represent restoration of the original sequence. Depending on the construct, 20 to 33% of reads arose via gene conversion (homologous recombination). Remarkably, <1 to >8% of reads apparently display synthesis-dependent strand annealing linked with NHEJ, inserting 4 to 61 bp, mostly originating from the surrounding of breakpoints. Positional coincidence of >81% of sister chromatid exchanges with target loci is unprecedented for higher eukaryotes and indicates that most repair events for staggered DSBs, at least in barley, involve the sister chromatid and occur during S or G2 phase of the cell cycle.
Zobrazit více v PubMed
Britt A.B., May G.D. (2003). Re-engineering plant gene targeting. Trends Plant Sci. 8: 90–95 PubMed
Deriano L., Roth D.B. (2013). Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47: 433–455 PubMed
Edgar R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996–998 PubMed
Fauser F., Roth N., Pacher M., Ilg G., Sánchez-Fernández R., Biesgen C., Puchta H. (2012). In planta gene targeting. Proc. Natl. Acad. Sci. USA 109: 7535–7540 PubMed PMC
Furtado A., Henry R.J. (2005). The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol. J. 3: 421–434 PubMed
Gisler B., Salomon S., Puchta H. (2002). The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J. 32: 277–284 PubMed
González-Barrera S., Cortés-Ledesma F., Wellinger R.E., Aguilera A. (2003). Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell 11: 1661–1671 PubMed
Gorbunova V., Levy A.A. (1997). Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25: 4650–4657 PubMed PMC
Haber J.E. (1999). DNA recombination: the replication connection. Trends Biochem. Sci. 24: 271–275 PubMed
Hensel G., Kastner C., Oleszczuk S., Riechen J., Kumlehn J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics 2009: 835608. PubMed PMC
Heyer W.D., Ehmsen K.T., Liu J. (2010). Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44: 113–139 PubMed PMC
Jasin M., Rothstein R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5: a012740. PubMed PMC
Johnson R.D., Jasin M. (2000). Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19: 3398–3407 PubMed PMC
Kamisugi Y., Schlink K., Rensing S.A., Schween G., von Stackelberg M., Cuming A.C., Reski R., Cove D.J. (2006). The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res. 34: 6205–6214 PubMed PMC
Kirik A., Salomon S., Puchta H. (2000). Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19: 5562–5566 PubMed PMC
Lieber M.R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79: 181–211 PubMed PMC
Lin W.Y., Wilson J.H., Lin Y. (2013). Repair of chromosomal double-strand breaks by precise ligation in human cells. DNA Repair (Amst.) 12: 480–487 PubMed PMC
Ma L., Vu G.T., Schubert V., Watanabe K., Stein N., Houben A., Schubert I. (2010). Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res. 18: 841–850 PubMed
McVey M., Lee S.E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24: 529–538 PubMed PMC
Meyer M., Stenzel U., Hofreiter M. (2008). Parallel tagged sequencing on the 454 platform. Nat. Protoc. 3: 267–278 PubMed
Natarajan A.T., Mullenders L.H., Meijers M., Mukherjee U. (1985). Induction of sister-chromatid exchanges by restriction endonucleases. Mutat. Res. 144: 33–39 PubMed
Orel N., Kyryk A., Puchta H. (2003). Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35: 604–612 PubMed
Pacher M., Schmidt-Puchta W., Puchta H. (2007). Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175: 21–29 PubMed PMC
Puchta H. (1999). Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152: 1173–1181 PubMed PMC
Puchta H. (2005). The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56: 1–14 PubMed
Puchta H., Fauser F. (2013). Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 57: 629–637 PubMed
Qi Y., Zhang Y., Zhang F., Baller J.A., Cleland S.C., Ryu Y., Starker C.G., Voytas D.F. (2013). Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 23: 547–554 PubMed PMC
Reiss B. (2003). Homologous recombination and gene targeting in plant cells. Int. Rev. Cytol. 228: 85–139 PubMed
Richardson C., Jasin M. (2000). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405: 697–700 PubMed
Rothkamm K., Krüger I., Thompson L.H., Löbrich M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23: 5706–5715 PubMed PMC
Schaefer D.G. (2001). Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4: 143–150 PubMed
Schubert I., Rieger R. (1981). Sister chromatid exchanges and heterochromatin. Hum. Genet. 57: 119–130 PubMed
Schubert I., Künzel G., Bretschneider H., Rieger R., Nicoloff H. (1980). Sister chromatid exchanges in barley. Theor. Appl. Genet. 56: 1–4 PubMed
Schubert I., Pecinka A., Meister A., Schubert V., Klatte M., Jovtchev G. (2004). DNA damage processing and aberration formation in plants. Cytogenet. Genome Res. 104: 104–108 PubMed
Schubert I., Schubert V., Fuchs J. (2011). No evidence for “break-induced replication” in a higher plant - but break-induced conversion may occur. Front. Plant Sci. 2: 8. PubMed PMC
Serra H., Da Ines O., Degroote F., Gallego M.E., White C.I. (2013). Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet. 9: e1003971. PubMed PMC
Shrivastav M., De Haro L.P., Nickoloff J.A. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res. 18: 134–147 PubMed
Siebert R., Puchta H. (2002). Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14: 1121–1131 PubMed PMC
Smith J., Baldeyron C., De Oliveira I., Sala-Trepat M., Papadopoulo D. (2001). The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res. 29: 4783–4792 PubMed PMC
Symington L.S., Gautier J. (2011). Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45: 247–271 PubMed
Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21: 2688–2699 PubMed PMC
Yu A.M., McVey M. (2010). Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. 38: 5706–5717 PubMed PMC
Zeocin-induced DNA damage response in barley and its dependence on ATR
Stable gene replacement in barley by targeted double-strand break induction