Repair of Site-Specific DNA Double-Strand Breaks in Barley Occurs via Diverse Pathways Primarily Involving the Sister Chromatid

. 2014 May ; 26 (5) : 2156-2167. [epub] 20140529

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24876253

DNA double-strand break (DSB) repair mechanisms differ in their requirements for a homologous repair template and in the accuracy of the result. We aimed to quantify the outcome of repair of a single targeted DSB in somatic cells of young barley (Hordeum vulgare) plants. Amplicon sequencing of three reporter constructs revealed 47 to 58% of reads as repaired via nonhomologous end-joining (NHEJ) with deletions and/or small (1 to 3 bp) insertions. Alternative NHEJ revealed 2 to 5 bp microhomology (15.7% of cases) or new replication-mediated short duplications at sealed breaks. Although deletions outweigh insertions in barley, this bias was less pronounced and deleted sequences were shorter than in Arabidopsis thaliana. Between 17 and 33% of reads likely represent restoration of the original sequence. Depending on the construct, 20 to 33% of reads arose via gene conversion (homologous recombination). Remarkably, <1 to >8% of reads apparently display synthesis-dependent strand annealing linked with NHEJ, inserting 4 to 61 bp, mostly originating from the surrounding of breakpoints. Positional coincidence of >81% of sister chromatid exchanges with target loci is unprecedented for higher eukaryotes and indicates that most repair events for staggered DSBs, at least in barley, involve the sister chromatid and occur during S or G2 phase of the cell cycle.

Zobrazit více v PubMed

Britt A.B., May G.D. (2003). Re-engineering plant gene targeting. Trends Plant Sci. 8: 90–95 PubMed

Deriano L., Roth D.B. (2013). Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 47: 433–455 PubMed

Edgar R.C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996–998 PubMed

Fauser F., Roth N., Pacher M., Ilg G., Sánchez-Fernández R., Biesgen C., Puchta H. (2012). In planta gene targeting. Proc. Natl. Acad. Sci. USA 109: 7535–7540 PubMed PMC

Furtado A., Henry R.J. (2005). The wheat Em promoter drives reporter gene expression in embryo and aleurone tissue of transgenic barley and rice. Plant Biotechnol. J. 3: 421–434 PubMed

Gisler B., Salomon S., Puchta H. (2002). The role of double-strand break-induced allelic homologous recombination in somatic plant cells. Plant J. 32: 277–284 PubMed

González-Barrera S., Cortés-Ledesma F., Wellinger R.E., Aguilera A. (2003). Equal sister chromatid exchange is a major mechanism of double-strand break repair in yeast. Mol. Cell 11: 1661–1671 PubMed

Gorbunova V., Levy A.A. (1997). Non-homologous DNA end joining in plant cells is associated with deletions and filler DNA insertions. Nucleic Acids Res. 25: 4650–4657 PubMed PMC

Haber J.E. (1999). DNA recombination: the replication connection. Trends Biochem. Sci. 24: 271–275 PubMed

Hensel G., Kastner C., Oleszczuk S., Riechen J., Kumlehn J. (2009). Agrobacterium-mediated gene transfer to cereal crop plants: current protocols for barley, wheat, triticale, and maize. Int. J. Plant Genomics 2009: 835608. PubMed PMC

Heyer W.D., Ehmsen K.T., Liu J. (2010). Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44: 113–139 PubMed PMC

Jasin M., Rothstein R. (2013). Repair of strand breaks by homologous recombination. Cold Spring Harb. Perspect. Biol. 5: a012740. PubMed PMC

Johnson R.D., Jasin M. (2000). Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19: 3398–3407 PubMed PMC

Kamisugi Y., Schlink K., Rensing S.A., Schween G., von Stackelberg M., Cuming A.C., Reski R., Cove D.J. (2006). The mechanism of gene targeting in Physcomitrella patens: homologous recombination, concatenation and multiple integration. Nucleic Acids Res. 34: 6205–6214 PubMed PMC

Kirik A., Salomon S., Puchta H. (2000). Species-specific double-strand break repair and genome evolution in plants. EMBO J. 19: 5562–5566 PubMed PMC

Lieber M.R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79: 181–211 PubMed PMC

Lin W.Y., Wilson J.H., Lin Y. (2013). Repair of chromosomal double-strand breaks by precise ligation in human cells. DNA Repair (Amst.) 12: 480–487 PubMed PMC

Ma L., Vu G.T., Schubert V., Watanabe K., Stein N., Houben A., Schubert I. (2010). Synteny between Brachypodium distachyon and Hordeum vulgare as revealed by FISH. Chromosome Res. 18: 841–850 PubMed

McVey M., Lee S.E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24: 529–538 PubMed PMC

Meyer M., Stenzel U., Hofreiter M. (2008). Parallel tagged sequencing on the 454 platform. Nat. Protoc. 3: 267–278 PubMed

Natarajan A.T., Mullenders L.H., Meijers M., Mukherjee U. (1985). Induction of sister-chromatid exchanges by restriction endonucleases. Mutat. Res. 144: 33–39 PubMed

Orel N., Kyryk A., Puchta H. (2003). Different pathways of homologous recombination are used for the repair of double-strand breaks within tandemly arranged sequences in the plant genome. Plant J. 35: 604–612 PubMed

Pacher M., Schmidt-Puchta W., Puchta H. (2007). Two unlinked double-strand breaks can induce reciprocal exchanges in plant genomes via homologous recombination and nonhomologous end joining. Genetics 175: 21–29 PubMed PMC

Puchta H. (1999). Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells. Genetics 152: 1173–1181 PubMed PMC

Puchta H. (2005). The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J. Exp. Bot. 56: 1–14 PubMed

Puchta H., Fauser F. (2013). Gene targeting in plants: 25 years later. Int. J. Dev. Biol. 57: 629–637 PubMed

Qi Y., Zhang Y., Zhang F., Baller J.A., Cleland S.C., Ryu Y., Starker C.G., Voytas D.F. (2013). Increasing frequencies of site-specific mutagenesis and gene targeting in Arabidopsis by manipulating DNA repair pathways. Genome Res. 23: 547–554 PubMed PMC

Reiss B. (2003). Homologous recombination and gene targeting in plant cells. Int. Rev. Cytol. 228: 85–139 PubMed

Richardson C., Jasin M. (2000). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405: 697–700 PubMed

Rothkamm K., Krüger I., Thompson L.H., Löbrich M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol. Cell. Biol. 23: 5706–5715 PubMed PMC

Schaefer D.G. (2001). Gene targeting in Physcomitrella patens. Curr. Opin. Plant Biol. 4: 143–150 PubMed

Schubert I., Rieger R. (1981). Sister chromatid exchanges and heterochromatin. Hum. Genet. 57: 119–130 PubMed

Schubert I., Künzel G., Bretschneider H., Rieger R., Nicoloff H. (1980). Sister chromatid exchanges in barley. Theor. Appl. Genet. 56: 1–4 PubMed

Schubert I., Pecinka A., Meister A., Schubert V., Klatte M., Jovtchev G. (2004). DNA damage processing and aberration formation in plants. Cytogenet. Genome Res. 104: 104–108 PubMed

Schubert I., Schubert V., Fuchs J. (2011). No evidence for “break-induced replication” in a higher plant - but break-induced conversion may occur. Front. Plant Sci. 2: 8. PubMed PMC

Serra H., Da Ines O., Degroote F., Gallego M.E., White C.I. (2013). Roles of XRCC2, RAD51B and RAD51D in RAD51-independent SSA recombination. PLoS Genet. 9: e1003971. PubMed PMC

Shrivastav M., De Haro L.P., Nickoloff J.A. (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res. 18: 134–147 PubMed

Siebert R., Puchta H. (2002). Efficient repair of genomic double-strand breaks by homologous recombination between directly repeated sequences in the plant genome. Plant Cell 14: 1121–1131 PubMed PMC

Smith J., Baldeyron C., De Oliveira I., Sala-Trepat M., Papadopoulo D. (2001). The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res. 29: 4783–4792 PubMed PMC

Symington L.S., Gautier J. (2011). Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45: 247–271 PubMed

Watanabe K., Pacher M., Dukowic S., Schubert V., Puchta H., Schubert I. (2009). The STRUCTURAL MAINTENANCE OF CHROMOSOMES 5/6 complex promotes sister chromatid alignment and homologous recombination after DNA damage in Arabidopsis thaliana. Plant Cell 21: 2688–2699 PubMed PMC

Yu A.M., McVey M. (2010). Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. 38: 5706–5717 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...