MicroRNAs involved in the lipid metabolism and their possible implications for atherosclerosis development and treatment
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
24876669
PubMed Central
PMC4020222
DOI
10.1155/2014/275867
Knihovny.cz E-zdroje
- MeSH
- ateroskleróza metabolismus patofyziologie MeSH
- biologické markery metabolismus MeSH
- Cercopithecus aethiops MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- lipoproteiny HDL metabolismus MeSH
- metabolismus lipidů * MeSH
- mikro RNA metabolismus MeSH
- myši MeSH
- posttranskripční úpravy RNA MeSH
- progrese nemoci MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- lipoproteiny HDL MeSH
- mikro RNA MeSH
Hyperlipidemia is a well-accepted risk factor in the development of atherosclerosis. MicroRNAs (miRNAs), a novel class of posttranscriptional regulators of gene expression, are involved in a variety of biological and pathological processes, including the regulation of the lipid metabolism and atherosclerosis. As our knowledge of miRNAs expands, a new class of "circulating miRNAs" has recently been described. It includes miRNAs which may be found in various bodily fluids packaged in microvesicles/exosomes, or bound to specific transporting proteins. High-density lipoprotein (HDL) particles have been identified as one such carrier. As this class of miRNAs likely plays a role in intercellular communication, it may also contribute to the atherosclerosis development and progression. This review aims to provide a comprehensive explanation of the roles of distinct miRNAs involved in the regulation of the lipid metabolism. These microRNAs seem to be promising therapeutic agents, as documented in rodents and African green monkeys. The second part of the review focuses on circulating miRNAs and their involvement in the atherosclerosis, especially as their levels have been described as altered in patients with dyslipidemia/hyperlipidemia. Special emphasis is placed on miRNAs transported in a complex with HDL particles and on those which may be considered potential atherosclerosis biomarkers.
Zobrazit více v PubMed
Ross R. Atherosclerosis: an inflammatory disease. The New England Journal of Medicine. 1999;340:115–126. PubMed
Glueck CJ. Role of risk factor management in progression and regression of coronary and femoral artery atherosclerosis. The American Journal of Cardiology. 1986;57(14):35G–41G. PubMed
Al Montasir A, Sadik MH. Acute myocardial infarction in a 28 year man with familial hypercholesterolemia. Indian Journal of Medical Sciences. 2012;66:78–81. PubMed
Goldberg AC, Hopkins PN, Toth PP, et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association expert panel on familial hypercholesterolemia. Journal of Clinical Lipidology. 2011;5(3):S1–S8. PubMed
Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. Journal of Clinical Investigation. 2003;111(12):1795–1803. PubMed PMC
Rayner KJ, Suárez Y, Dávalos A, et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328(5985):1570–1573. PubMed PMC
Najafi-Shoushtari SH, Kristo F, Li Y, et al. MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science. 2010;328(5985):1566–1569. PubMed PMC
Gerin I, Clerbaux L-A, Haumont O, et al. Expression of miR-33 from an SREBP2 intron inhibits cholesterol export and fatty acid oxidation. Journal of Biological Chemistry. 2010;285(44):33652–33661. PubMed PMC
Goedeke L, Vales-Lara FM, Fenstermaker M, et al. A regulatory role for microRNA 33* in controlling lipid metabolism gene expression. Molecular and Cellular Biology. 2013;33:2339–2352. PubMed PMC
Marquart TJ, Allen RM, Ory DS, Baldán Á. MiR-33 links SREBP-2 induction to repression of sterol transporters. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(27):12228–12232. PubMed PMC
Allen RM, Marquart TJ, Albert CJ, et al. MiR-33 controls the expression of biliary transporters, and mediates statin- and diet-induced hepatotoxicity. The EMBO Molecular Medicine. 2012;4:882–895. PubMed PMC
Krützfeldt J, Rajewsky N, Braich R, et al. Silencing of microRNAs in vivo with ’antagomirs’. Nature. 2005;438(7068):685–689. PubMed
Esau C, Davis S, Murray SF, et al. MiR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism. 2006;3(2):87–98. PubMed
Hsu SH, Wang B, Kota J, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation. 2012;122:2871–2883. PubMed PMC
Tsai WC, Hsu SD, Hsu CS, et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. The Journal of Clinical Investigation. 2012;122:2884–2897. PubMed PMC
Shirasaki T, Honda M, Shimakami T, et al. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. Journal of Virology. 2013;87:5270–5286. PubMed PMC
Kida K, Nakajima M, Mohri T, et al. PPARα is regulated by miR-21 and miR-27b in human liver. Pharmaceutical Research. 2011;28(10):2467–2476. PubMed
Vickers KC, Shoucri BM, Levin MG, et al. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology. 2013;57:533–542. PubMed PMC
Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS Journal. 2009;276(8):2348–2358. PubMed PMC
Kim SY, Kim AY, Lee HW, et al. MiR-27a is a negative regulator of adipocyte differentiation via suppressing PPARγ expression. Biochemical and Biophysical Research Communications. 2010;392(3):323–328. PubMed
Iliopoulos D, Drosatos K, Hiyama Y, Goldberg IJ, Zannis VI. MicroRNA-370 controls the expression of MicroRNA-122 and Cpt1α and affects lipid metabolism. Journal of Lipid Research. 2010;51(6):1513–1523. PubMed PMC
de Aguiar Vallim TQ, Tarling EJ, Kim T, et al. MicroRNA-144 regulates hepatic ATP binding cassette transporter A1 and plasma high-density lipoprotein after activation of the nuclear receptor farnesoid X receptor. Circulation Research. 2013;112:1602–1612. PubMed PMC
Ramirez CM, Rotllan N, Vlassov AV, et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circulation Research. 2013;112:1592–1601. PubMed PMC
Zhong D, Huang G, Zhang Y, et al. MicroRNA-1 and microRNA-206 suppress LXRalpha-induced lipogenesis in hepatocytes. Cellular Signalling. 2013;25:1429–137. PubMed
Xu J, Hu G, Lu M, et al. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochimica et Biophysica Sinica. 2013;45:953–962. PubMed
Thulin P, Wei T, Werngren O, et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor delta in human monocytes during the inflammatory response. International Journal of Molecular Medicine. 2013;31:1003–1010. PubMed PMC
Ahn J, Lee H, Jung CH, Ha T. Lycopene inhibits hepatic steatosis via microRNA-21-induced downregulation of fatty acid-binding protein 7 in mice fed a high-fat diet. Molecular nutrition and Food Research. 2012;56:1665–1674. PubMed
Chen T, Li Z, Tu J, et al. MicroRNA-29a regulates pro-inflammatory cytokine secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Letters. 2011;585(4):657–663. PubMed
Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nature Medicine. 2013;19:892–900. PubMed PMC
Chen T, Huang Z, Wang L, et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovascular Research. 2009;83(1):131–139. PubMed
Chen T, Li Z, Jing T, et al. MicroRNA-155 regulates lipid uptake, adhesion/chemokine marker secretion and SCG2 expression in oxLDL-stimulated dendritic cells/macrophages. International Journal of Cardiology. 2011;147(3):446–447. PubMed
Miller AM, Gilchrist DS, Nijjar J, et al. MiR-155 has a protective role in the development of non-alcoholic hepatosteatosis in mice. PLoS ONE. 2013;80072324 PubMed PMC
Zhu GF, Yang LX, Guo RW, et al. MiR-155 inhibits oxidized low-density lipoprotein-induced apoptosis of RAW264. 7 cells. Molecular and Cellular Biochemistry. 2013;382:253–261. PubMed
Sun X, He S, Wara AK, et al. Systemic delivery of MicroRNA-181b inhibits NF-kappaB activation, vascular inflammation, and atherosclerosis in Apoe-/- Mice. Circulation Research. 2014;114(1):32–40. PubMed PMC
Li X, Chen YT, Josson S, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PLoS ONE. 2013;8e70987 PubMed PMC
Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. Journal of Biological Chemistry. 2012;287(13):9817–9826. PubMed PMC
Nakanishi N, Nakagawa Y, Tokushige N, et al. The up-regulation of microRNA-335 is associated with lipid metabolism in liver and white adipose tissue of genetically obese mice. Biochemical and Biophysical Research Communications. 2009;385(4):492–496. PubMed
Carrer M, Liu N, Grueter CE, et al. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:15330–15335. PubMed PMC
Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA. Roles for miRNA-378/378∗ in adipocyte gene expression and lipogenesis. The American Journal of Physiology: Endocrinology and Metabolism. 2010;299(2):E198–E206. PubMed PMC
Ahn J, Lee H, Chung CH, Ha T. High fat diet induced downregulation of microRNA-467b increased lipoprotein lipase in hepatic steatosis. Biochemical and Biophysical Research Communications. 2011;414(4):664–669. PubMed
Tian GP, Chen WJ, He PP, et al. MicroRNA-467b targets LPL gene in RAW 264. 7 macrophages and attenuates lipid accumulation and proinflammatory cytokine secretion. Biochimie. 2012;94:2749–2755. PubMed
Zhong D, Zhang Y, Zeng YJ, et al. MicroRNA-613 represses lipogenesis in HepG2 cells by downregulating LXRalpha. Lipids in Health and Disease. 2013;12, article 32 PubMed PMC
Ginter E, Simko V. New promising potential in fighting atherosclerosis: HDL and reverse cholesterol transport. Bratislavske Lekarske Listy. 2013;114:172–176. PubMed
Peluso I, Morabito G, Urban L, Ioannone F, Serafini M. Oxidative stress in atherosclerosis development: the central role of LDL and oxidative burst. Endocrine, Metabolic and Immune Disorders Drug Targets. 2012;12:351–360. PubMed
McGill HC, Jr., McMahan CA, Kruski AW, Mott GE. Relationship of lipoprotein cholesterol concentrations to experimental atherosclerosis in baboons. Arteriosclerosis. 1981;1(1):3–12. PubMed
Shimano H, Aburatani H, Mori N, et al. Down-regulation of hepatic LDL receptor protein and messenger RNA in fasted rabbits. Journal of Biochemistry. 1988;104(5):712–716. PubMed
Kzhyshkowska J, Neyen C, Gordon S. Role of macrophage scavenger receptors in atherosclerosis. Immunobiology. 2012;217(5):492–502. PubMed
Lee Y, Jeon K, Lee J-T, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. The EMBO Journal. 2002;21(17):4663–4670. PubMed PMC
He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics. 2004;5:522–531. PubMed
Madrigal-Matute J, Rotllan N, Aranda JF, Fernandez-Hernando C. MicroRNAs and atherosclerosis. Current Atherosclerosis Reports. 2013;15(5, article 322) PubMed PMC
Yang J-S, Lai EC. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Molecular Cell. 2011;43(6):892–903. PubMed PMC
Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(30):10513–10518. PubMed PMC
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nature Cell Biology. 2011;13(4):423–435. PubMed PMC
Redova M, Sana J, Slaby O. Circulating miRNAs as new blood-based biomarkers for solid cancers. Future Oncology. 2013;9:387–402. PubMed
Musso G, Gambino R, Cassader M. Cholesterol metabolism and the pathogenesis of non-alcoholic steatohepatitis. Progress in Lipid Research. 2013;52:175–91. PubMed
Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Research. 2004;14:1902–1910. PubMed PMC
Kozomara A, Griffiths-Jones S. MiRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research. 2011;39(1):D152–D157. PubMed PMC
Dávalos A, Goedeke L, Smibert P, et al. MiR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(22):9232–9237. PubMed PMC
Ramirez CM, Goedeke L, Rotllan N, et al. MicroRNA 33 regulates glucose metabolism. Molecular and Cellular Biology. 2013;33:2891–2902. PubMed PMC
Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific MicroRNAs from mouse. Current Biology. 2002;12(9):735–739. PubMed
Chang J, Nicolas E, Marks D, et al. MiR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biology. 2004;1(2):106–113. PubMed
Conrad KD, Niepmann M. Role of microRNAs in hepatitis C virus RNA replication. Archives of Virology. 2013 PubMed
Hu J, Xu Y, Hao J, Wang S, Li C, Meng S. MiR-122 in hepatic function and liver diseases. Protein and Cell. 2012;3:364–371. PubMed PMC
Elmén J, Lindow M, Silahtaroglu A, et al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research. 2008;36(4):1153–1162. PubMed PMC
Moore KJ, Rayner KJ, Suárez Y, Fernández-Hernando C. MicroRNAs and cholesterol metabolism. Trends in Endocrinology and Metabolism. 2010;21(12):699–706. PubMed PMC
Gao W, He HW, Wang ZM, et al. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids in Health and Disease. 2012;11, artricle 55 PubMed PMC
Vickers KC, Rader DJ. Nuclear receptors and microRNA-144 coordinately regulate cholesterol efflux. Circulation Research. 2013;112:1529–1531. PubMed PMC
Wang D, Xia M, Yan X, et al. Gut microbiota metabolism of anthocyanin promotes reverse cholesterol transport in mice via repressing miRNA-10b. Circulation Research. 2012;111:967–981.266502 PubMed
Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X. MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Letters. 2012;586:1472–1479. PubMed
Kang MH, Zhang L, Wijesekara N, et al. Regulation of ABCA1 protein expression and function in hepatic and pancreatic islet cells by miR-145. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33(12):2724–2732. PubMed
Kim J, Yoon H, Ramírez CM, et al. MiR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Experimental Neurology. 2012;235(2):476–483. PubMed PMC
Ramirez CM, Dávalos A, Goedeke L, et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arteriosclerosis, Thrombosis, and Vascular Biology. 2011;31(11):2707–2714. PubMed PMC
Fish JE, Santoro MM, Morton SU, et al. MiR-126 regulates angiogenic signaling and vascular integrity. Developmental Cell. 2008;15(2):272–284. PubMed PMC
Wang S, Aurora AB, Johnson BA, et al. The endothelial-specific MicroRNA miR-126 governs vascular integrity and angiogenesis. Developmental Cell. 2008;15(2):261–271. PubMed PMC
Li J, Zhang Y, Liu Y, et al. Microvesicle-mediated transfer of microRNA-150 from monocytes to endothelial cells promotes angiogenesis. The Journal of Biological Chemistry. 2013;288:23586–23596. PubMed PMC
Zhang Y, Liu D, Chen X, et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Molecular cell. 2010;39:133–144. PubMed
Wagner J, Riwanto M, Besler C, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33:1392–1400.300741 PubMed
Weber JA, Baxter DH, Zhang S, et al. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010;56(11):1733–1741. PubMed PMC
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007;9(6):654–659. PubMed
Hunter MP, Ismail N, Zhang X, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 2008;3(11)e3694 PubMed PMC
Zernecke A, Bidzhekov K, Noels H, et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Science Signaling. 2009;2(100)ra81 PubMed
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Research. 2011;39(16):7223–7233. PubMed PMC
Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N. Plasma miR-208 as a biomarker of myocardial injury. Clinical Chemistry. 2009;55(11):1944–1949. PubMed
Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. Secretory mechanisms and intercellular transfer of microRNAs in living cells. Journal of Biological Chemistry. 2010;285(23):17442–17452. PubMed PMC
Diehl P, Fricke A, Sander L, et al. Microparticles: major transport vehicles for distinct microRNAs in circulation. Cardiovascular Research. 2012;93(4):633–644. PubMed PMC
Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circulation Research. 2010;107(5):677–684. PubMed
Karolina DS, Tavintharan S, Armugam A, et al. Circulating miRNA profiles in patients with metabolic syndrome. The Journal of Clinical Endocrinology and Metabolism. 2012;97:2271–2276. PubMed
Finn NA, Eapen D, Manocha P, et al. Coronary heart disease alters intercellular communication by modifying microparticle-mediated microRNA transport. FEBS Letters. 2013;587:3456–3463. PubMed PMC
Zhou J, Li YS, Nguyen P, et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circulation Research. 2013;113:40–51. PubMed PMC
Sun X, Zhang M, Sanagawa A, et al. Circulating microRNA-126 in patients with coronary artery disease: correlation with LDL cholesterol. Thrombosis Journal. 2012;10, article 16 PubMed PMC
Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(5):1516–1521. PubMed PMC
Zampetaki A, Willeit P, Tilling L, et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. Journal of the American College of Cardiology. 2012;60:290–299. PubMed
Lu HQ, Liang C, He ZQ, Fan M, Wu ZG. Circulating miR-214 is associated with the severity of coronary artery disease. Journal of Geriatric Cardiology. 2013;10:34–38. PubMed PMC
Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. Journal of Vascular Research. 2013;50:346–354. PubMed
Lu H, Buchan RJ, Cook SA. MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovascular Research. 2010;86(3):410–420. PubMed
Wang L, Jia XJ, Jiang HJ, et al. MicroRNAs 185, 96, and 223 repress selective high-density lipoprotein cholesterol uptake through posttranscriptional inhibition. Molecular and Cellular Biology. 2013;33:1956–1964. PubMed PMC
Bauernfeind F, Rieger A, Schildberg FA, Knolle PA, Schmid-Burgk JL, Hornung V. NLRP3 inflammasome activity is negatively controlled by miR-223. Journal of Immunology. 2012;189:4175–4181. PubMed
Tabet F, Vickers KC, Cuesta Torres LF, et al. HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nature Communications. 2014;53292 PubMed PMC
Duffy D, Rader DJ. Update on strategies to increase HDL quantity and function. Nature Reviews Cardiology. 2009;6:455–463. PubMed
Haneklaus M, Gerlic M, 'Neill LA O, Masters SL. MiR-223: infection, inflammation and cancer. Journal of Internal Medicine. 2013;274:215–226. PubMed PMC
Ma X, Ma C, zheng X. MicroRNA-155 in the pathogenesis of atherosclerosis: a conflicting role? Heart, Lung and Circulation. 2013;22:811–818. PubMed
Pedersen TR. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S) The Lancet. 1994;344(8934):1383–1389. PubMed
Soriano A, Jubierre L, Almazan-Moga A, et al. MicroRNAs as pharmacological targets in cancer. Pharmacological Research. 2013;75:3–14. PubMed
Marquart TJ, Wu J, Lusis AJ, Baldan A. Anti-miR-33 therapy does not alter the progression of atherosclerosis in low-density lipoprotein receptor-deficient mice. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33:455–458. PubMed PMC
Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice: brief report. Arteriosclerosis, Thrombosis, and Vascular Biology. 2013;33:1973–1977. PubMed PMC
Horie T, Baba O, Kuwabara Y, et al. MicroRNA-33 deficiency reduces the progression of atherosclerotic plaque in ApoE-/- mice. Journal of the American Heart Association. 2012;1e003376 PubMed PMC
Rayner KJ, Esau CC, Hussain FN, et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478(7369):404–407. PubMed PMC
Rayner KJ, Sheedy FJ, Esau CC, et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. Journal of Clinical Investigation. 2011;121(7):2921–2931. PubMed PMC
http://www.regulusrx.com/therapeutic-areas/#Atherosclerosis.
Hildebrandt-Eriksen ES, Aarup V, Persson R, Hansen HF, Munk ME, Orum H. A locked nucleic acid oligonucleotide targeting microRNA 122 is well-tolerated in cynomolgus monkeys. Nucleic Acid Therapeutics. 2012;22:152–161. PubMed