The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
24876910
PubMed Central
PMC4020166
DOI
10.1155/2014/381413
Knihovny.cz E-zdroje
- MeSH
- chlorid uhličitý toxicita MeSH
- down regulace účinky léků MeSH
- jaterní testy MeSH
- játra účinky léků metabolismus patologie MeSH
- krysa rodu Rattus MeSH
- lékové postižení jater farmakoterapie etiologie patologie MeSH
- malondialdehyd krev MeSH
- matrixová metaloproteinasa 9 metabolismus MeSH
- ochranné látky farmakologie terapeutické užití MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- oxidoreduktasy krev metabolismus MeSH
- Physalis chemie metabolismus MeSH
- potkani Wistar MeSH
- rostlinné extrakty chemie farmakologie terapeutické užití MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- chlorid uhličitý MeSH
- malondialdehyd MeSH
- matrixová metaloproteinasa 9 MeSH
- ochranné látky MeSH
- oxid dusnatý MeSH
- oxidoreduktasy MeSH
- rostlinné extrakty MeSH
The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway.
Zobrazit více v PubMed
Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clinical Reviews in Allergy and Immunology. 2009;36(1):4–12. PubMed
Vitaglione P, Morisco F, Caporaso N, Fogliano V. Dietary antioxidant compounds and liver health. Critical Reviews in Food Science and Nutrition. 2004;44(7-8):575–586. PubMed
Hsu Y-W, Tsai C-F, Chang W-H, Ho Y-C, Chen W-K, Lu F-J. Protective effects of Dunaliella salina—a carotenoids-rich alga, against carbon tetrachloride-induced hepatotoxicity in mice. Food and Chemical Toxicology. 2008;46(10):3311–3317. PubMed
Pohl LR, Schulick RD, Highet RJ, George JW. Reductive-oxygenation mechanism of metabolism of carbon tetrachloride to phosgene by cytochrome P-450. Molecular Pharmacology. 1984;25(2):318–321. PubMed
Kurata M, Suzuki M, Agar NS. Antioxidant systems and erythrocyte life-span in mammals. Comparative Biochemistry and Physiology B: Biochemistry and Molecular Biology. 1993;106(3):477–487. PubMed
Ghatak S, Biswas A, Dhali GK, Chowdhury A, Boyer JL, Santra A. Oxidative stress and hepatic stellate cell activation are key events in arsenic induced liver fibrosis in mice. Toxicology and Applied Pharmacology. 2011;251(1):59–69. PubMed PMC
Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular Pharmacology. 2008;73(2):399–409. PubMed
Deng G, Wang J, Zhang Q, et al. Hepatoprotective effects of phloridzin on hepatic fibrosis induced by carbon tetrachloride against oxidative stress-triggered damage and fibrosis in rats. Biological & Pharmaceutical Bulletin. 2012;35(7):1118–1125. PubMed
Othman MS, Nada A, Zaki HS, Abdel Moneim AE. Effect of Physalis peruviana L. on cadmium-induced testicular toxicity in rats. Biological Trace Element Research, 2014. PubMed
Othman MS, Safwat G, Aboulkhair M, Abdel Moneim AE. The Potential Effect of Berberine in Mercury-induced Hepatorenal Toxicity in Albino Rats. Food and Chemical Toxicology, 2014. PubMed
Fang S-T, Liu J-K, Li B. Ten new withanolides from Physalis peruviana . Steroids. 2012;77(1-2):36–44. PubMed
Wang I-K, Lin-Shiau S-Y, Lin J-K. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. European Journal of Cancer. 1999;35(10):1517–1525. PubMed
Nishikimi M, Appaji Rao N, Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochemical and Biophysical Research Communications. 1972;46(2):849–854. PubMed
Abdel Moneim AE. The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat. CNS Neurological Disorders Drug Targets. 2013;12(6):830–841. PubMed
Sohn DH, Yun Y-P, Park KS, Veech RL, Song BJ. Post-translational reduction of cytochrome P450IIE by CCl4, its substrate. Biochemical and Biophysical Research Communications. 1991;179(1):449–454. PubMed
Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. American journal of clinical pathology. 1957;28(1):56–63. PubMed
Szasz G. A kinetic photometric method for serum gamma-glutamyl transpeptidase. Clinical Chemistry. 1969;15(2):124–136. PubMed
Belfield A, Goldberg DM. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme. 1971;12(5):561–573. PubMed
Garber CC. Jendrassik—Grof analysis for total and direct bilirubin in serum with a centrifugal analyzer. Clinical Chemistry. 1981;27:1410–1416. PubMed
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979;95(2):351–358. PubMed
Green LC, Wagner DA, Glogowski J. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Analytical Biochemistry. 1982;126(1):131–138. PubMed
Ellman GL. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics. 1959;82(1):70–77. PubMed
Aebi H. Catalase in vitro . Methods in Enzymology. 1984;105:121–126. PubMed
Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine. 1967;70(1):158–169. PubMed
Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. The Journal of Biological Chemistry. 1974;249(22):7130–7139. PubMed
Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS. Disruption of redox homeostasis in the transforming growth factor-α/c- myc transgenic mouse model of accelerated hepatocarcinogenesis. The Journal of Biological Chemistry. 1998;273(25):15846–15853. PubMed
Abdel Moneim AE, El-Deib KM. The Possible protective effects of Physalis peruviana on carbon tetrachloride-induced nephrotoxicity in male albino rats. Life Science Journal. 2012;9(3):1038–1052.
Yun J-W, Kim C-W, Bae I-H, et al. Determination of the key innate genes related to individual variation in carbon tetrachloride-induced hepatotoxicity using a pre-biopsy procedure. Toxicology and Applied Pharmacology. 2009;239(1):55–63. PubMed
Adesanoye OA, Farombi EO. Hepatoprotective effects of Vernonia amygdalina (astereaceae) in rats treated with carbon tetrachloride. Experimental and Toxicologic Pathology. 2010;62(2):197–206. PubMed
Coballase-Urrutia E, Pedraza-Chaverri J, Cárdenas-Rodríguez N, et al. Hepatoprotective effect of acetonic and methanolic extracts of Heterotheca inuloides against CCl4-induced toxicity in rats. Experimental and Toxicologic Pathology. 2011;63(4):363–370. PubMed
Boll M, Weber LWD, Becker E, Stampfl A. Mechanism of carbon tetrachloride-induced hepatotoxicity. Hepatocellular damage by reactive carbon tetrachloride metabolites. Zeitschrift fur Naturforschung C: Journal of Biosciences. 2001;56(7-8):649–659. PubMed
Ganie SA, Zargar BA, Masood A, Zargar MA. Hepatoprotective and antioxidant activity of rhizome of Podophyllum hexandrum against carbon tetra chloride induced hepatotoxicity in rats. Biomedical and Environmental Sciences. 2013;26(3):209–221. PubMed
Breikaa RM, Algandaby MM, El-Demerdash E, Abdel-Naim AB. Multimechanistic antifibrotic effect of biochanin a in rats: implications of proinflammatory and profibrogenic mediators. PLoS ONE. 2013;8(7)e69276 PubMed PMC
Ramadan MF. Bioactive phytochemicals, nutritional value, and functional properties of cape gooseberry (Physalis peruviana): an overview. Food Research International. 2011;44(7):1830–1836.
Chang JC, Lin CC, Wu SJ, et al. Antioxidative and hepatoprotective effects of Physalis peruviana extract against acetaminophen-induced liver injury in rats. Pharmaceutical Biology. 2008;46(10-11):724–731.
Arun M, Asha VV. Preliminary studies on antihepatotoxic effect of Physalis peruviana Linn. (Solanaceae) against carbon tetrachloride induced acute liver injury in rats. Journal of Ethnopharmacology. 2007;111(1):110–114. PubMed
El-Gengaihi SE, Hassan EE, Hamed MA, Zahran HG, Mohammed MA. Chemical composition and biological evaluation of Physalis peruviana root as hepato-renal protective agent. Journal of Dietary Supplements. 2013;10(1):39–53. PubMed
Wu S-J, Ng L-T, Lin D-L, Huang S-N, Wang S-S, Lin C-C. Physalis peruviana extract induces apoptosis in human Hep G2 cells through CD95/CD95L system and the mitochondrial signaling transduction pathway. Cancer Letters. 2004;215(2):199–208. PubMed
Wu SJ, Tsai JY, Chang SP, et al. Supercritical carbon dioxide extract exhibits enhanced antioxidant and anti-inflammatory activities of Physalis peruviana . Journal of Ethnopharmacology. 2006;108(3):407–413. PubMed
Mandal AK, Das N. Sugar coated liposomal flavonoid: a unique formulation in combating carbontetrachloride induced hepatic oxidative damage. Journal of Drug Targeting. 2005;13(5):305–315. PubMed
Janbaz KH, Saeed SA, Gilani AH. Studies on the protective effects of caffeic acid and quercetin on chemical-induced hepatotoxicity in rodents. Phytomedicine. 2004;11(5):424–430. PubMed
Tatiya AU, Surana SJ, Sutar MP, Gamit NH. Hepatoprotective effect of poly herbal formulation against various hepatotoxic agents in rats. Pharmacognosy Research. 2012;4(1):50–56. PubMed PMC
Kim J, Chehade J, Pinnas JL, Mooradian AD. Effect of select antioxidants on malondialdehyde modification of proteins. Nutrition. 2000;16(11-12):1079–1081. PubMed
Leung T-M, Fung M-L, Liong EC, Lau TYH, Nanji AA, Tipoe GL. Role of nitric oxide in the regulation of fibrogenic factors in experimental liver fibrosis in mice. Histology and Histopathology. 2011;26(2):201–211. PubMed
Zhu W, Fung PCW. The roles played by crucial free radicals like lipid free radicals, nitric oxide, and enzymes NOS and NADPH in CCl4-induced acute liver injury of mice. Free Radical Biology and Medicine. 2000;29(9):870–880. PubMed
El-Gengaihi SE, Hamed MA, Khalaf-Allah R, Mohammed MA. Golden berry juice attenuates the severity of hepatorenal injury. Journal of Dietary Supplements. 2013;10(4):357–369. PubMed
Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. Oxford, UK: Oxford University Press; 2007. Cellular responses to oxidative stress: adaptation, damage, repair, senescence and death; pp. 187–267.
Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology. 2007;39(1):44–84. PubMed
Vassiliadis E, Larsen DV, Clausen RE, et al. Measurement of co3-610, a potential liver biomarker derived from matrix metalloproteinase-9 degradation of collagen type iii, in a rat model of reversible carbon-tetrachloride-induced fibrosis. Biomarker Insights. 2011;6:49–58. PubMed PMC
Kahraman A, Bronk SF, Cazanave S, et al. Matrix metalloproteinase inhibitor, CTS-1027, attenuates liver injury and fibrosis in the bile duct-ligated mouse. Hepatology Research. 2009;39(8):805–813. PubMed PMC
Hollman PCH, Van Trijp JMP, Mengelers MJB, De Vries JHM, Katan MB. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Letters. 1997;114(1-2):139–140. PubMed
Boots AW, Wilms LC, Swennen ELR, Kleinjans JCS, Bast A, Haenen GRMM. In vitro and ex vivo anti-inflammatory activity of quercetin in healthy volunteers. Nutrition. 2008;24(7-8):703–710. PubMed
Tatsimo SJN, Tamokou JDDD, Havyarimana L, et al. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum . BMC Research Notes. 2012;5:p. 158. PubMed PMC