Cohabitation--relationships of corynebacteria and staphylococci on human skin
Language English Country United States Media print-electronic
Document type Journal Article
PubMed
24880250
PubMed Central
PMC4194702
DOI
10.1007/s12223-014-0326-2
Knihovny.cz E-resources
- MeSH
- Bacterial Proteins metabolism MeSH
- Corynebacterium classification enzymology isolation & purification physiology MeSH
- Adult MeSH
- Skin microbiology MeSH
- Humans MeSH
- Staphylococcus classification enzymology isolation & purification physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Bacterial Proteins MeSH
Skin microbiome main cultivable aerobes in human are coagulase-negative staphylococci and lipophilic corynebacteria. Staphylococcus strains (155) belonging to 10 species and 105 strains of Corynebacterium belonging to nine species from the skin swabs of healthy male volunteers were investigated to determine their enzymatic activity to main metabolic substrates: carbohydrates, proteins, lipids, and response to factors present on the skin such as osmotic pressure, pH, and organic acids. The results showed that lipophilic corynebacteria have different capacity for adaptation on the skin than staphylococci. Most of Corynebacterium spp. expressed lack of proteinase, phospholipase, and saccharolytic enzymes activity. Corynebacteria were also more sensitive than Staphylococcus spp. to antimicrobial agents existing on human skin, especially to low pH. These characters can explain domination of Staphylococcus genera on healthy human skin. It can be suggested that within these two bacterial genus, there exists conceivable cooperation and reciprocal protection which results in their quantitative ratio. Such behavior must be considered as crucial for the stability of the population on healthy skin.
See more in PubMed
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto J-M, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, MetaHIT Consortium. Weissenbach J, Ehrlich D, Bork P. Enterotypes of the human gut microbiome. Nature. 2011;473:174–180. doi: 10.1038/nature09944. PubMed DOI PMC
Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM. NHE1 regulates the stratum corneum permeability barrier homeostasis microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem. 2002;277:47399–47406. doi: 10.1074/jbc.M204759200. PubMed DOI
Bojar RA, Holland KT. Review: the human cutaneous microflora and factors controlling colonisation. World J Microbiol Biotechnol. 2002;18:889–903. doi: 10.1023/A:1021271028979. DOI
Chiller K, Selkin BA, Murakawa GJ. Skin microflora and bacterial infections of the skin. J Investig Dermatol Symp Proc. 2001;6:170–174. doi: 10.1046/j.0022-202x.2001.00043.x. PubMed DOI
Cogen AL, Nizet V, Gallo RL. Skin microbiota: a source of disease or defence? Br J Dermatol. 2008;158:442–455. doi: 10.1111/j.1365-2133.2008.08437.x. PubMed DOI PMC
Fluhr JW, Elias PM, Man M-Q, Hupe M, Selden C, Sundberg JP, Tschachler E, Eckhart L, Mauro TM, Feingold KR. Is the filaggrin-histidine-urocanic acid pathway essential for stratum corneum acidification? J Investig Dermatol. 2010;130:2141–2144. doi: 10.1038/jid.2010.74. PubMed DOI PMC
Fredricks DN. Microbial ecology of human skin in health and disease. J Investig Dermatol Symp Proc. 2001;6:167–169. doi: 10.1046/j.0022-202x.2001.00039.x. PubMed DOI
Freney J, Kloos WE, Hajek V, Webster JA. Recommended minimal standards for description of new staphylococcal species. Int J Syst Bacteriol. 1999;49:489–502. doi: 10.1099/00207713-49-2-489. PubMed DOI
Funke G, Graevenitz A, Clarridge JE, Bernard KA. Clinical microbiology of coryneform bacteria. Clin Microbiol Rev. 1997;10:125–159. PubMed PMC
Gunn BA. Culture media test and reagents in bacteriology. In: Howard JB, Keiser JF, Smith TF, Weissfeld A, Tilton RC, editors. Clinical and pathogenic microbiology. St Louis: Mosby-Year Book; 1994. pp. 863–912.
James AG, Casey J, Hyliands D, Mycock G. Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour. Word J Microbiol Biotechnol. 2004;20:787–793. doi: 10.1007/s11274-004-5843-8. DOI
Kaźmierczak AK, Szewczyk EM. Bacteria forming a resident flora of the skin as a potential source of opportunistic infections. Pol J Microbiol. 2004;53:249–255. doi: 10.1099/jmm.0.05418-0. PubMed DOI
Kaźmierczak AK, Szarapińska-Kwaszewska J, Szewczyk EM. Opportunistic coryneform organisms—residents of human skin. Pol J Microbiol. 2005;54:27–35. PubMed
Kouker G, Jaeger K-E. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol. 1987;53:211–213. PubMed PMC
Kwaszewska A, Szewczyk EM. Production of antibacterial substances by resident corynebacteria isolated from human skin. Med Dosw Mikrobiol. 2007;59:251–257. PubMed
Kwaszewska AK, Sobiś-Glinkowska M, Szewczyk EM. Influence of contact with hospital environment on sensitivity to antibiotics of lipophilic strains of Corynebacterium residing on human skin. Med Dosw Mikrobiol. 2009;61:359–366. PubMed
Lambers H, Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5 which is beneficial for its resident flora. Int J Cosmet Sci. 2006;28:359–370. doi: 10.1111/j.1467-2494.2006.00344.x. PubMed DOI
Lieckfeldt R, Villalaín J, Gómez-Fernández J-C, Lee G. Apparent pKa of the fatty acids within ordered mixtures of models human stratum corneum lipids. Pharm Res. 1995;12:1614–1617. doi: 10.1023/A:1016280714593. PubMed DOI
Mauro T, Grayson S, Gao WN, Man M-Q, Kriehuber E, Behne M, Feingold KR, Elias PM. Barrier recovery is impeded at neutral pH independent of ionic effects: implications for extracellular lipid processing. Arch Dermatol Res. 1998;290:215–222. doi: 10.1007/s004030050293. PubMed DOI
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Pühler A. Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411 a lipid-requiring bacterium of the human skin flora. J Bacteriol. 2005;187:4671–4682. doi: 10.1128/JB.187.13.4671-4682.2005. PubMed DOI PMC
Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, Goesmann A, Arnold W, Bekel T, Brinkrolf K, Brune I, Götker S, Kalinowski J, Kamp PB, Lobo FP, Viehoever P, Weisshaar B, Soriano F, Dröge M, Pühler A. The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing. J Biotechnol. 2008;136:11–21. doi: 10.1016/j.jbiotec.2008.02.009. PubMed DOI
The Human Microbiome Project Consortium Structure function and diversity of the healthy human microbiome. Nature. 2012;486:207–214. doi: 10.1038/nature11234. PubMed DOI PMC
Thwaite JE, Hibbs S, Titball RW, Atkins TP. Proteolytic degradation of human antimicrobial peptide LL-37 by Bacillus anthracis may contribute to virulence. Antimicrob Agents Chemother. 2006;50:2316–2322. doi: 10.1128/AAC.01488-05. PubMed DOI PMC
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449:804–810. doi: 10.1038/nature06244. PubMed DOI PMC
Ushijima T, Takahashi M, Ozaki Y. Acetic propionic and oleic acid as the possible factors influencing the predominant residence of some species of Propionibacterium and coagulase-negative Staphylococcus on normal human skin. Can J Microbiol. 1984;30:647–652. doi: 10.1139/m84-096. PubMed DOI
Waldon E, Sobiś-Glinkowska M, Szewczyk EM. Evaluation of selected features of Staphylococcus cohnii enabling colonization of humans. Folia Microbiol. 2002;47:565–571. doi: 10.1007/BF02818799. PubMed DOI