Epstein-Barr virus, the germinal centre and the development of Hodgkin's lymphoma
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
12393
Cancer Research UK - United Kingdom
PubMed
24893782
PubMed Central
PMC7346593
DOI
10.1099/vir.0.066712-0
Knihovny.cz E-zdroje
- MeSH
- B-lymfocyty imunologie virologie MeSH
- buněčná diferenciace imunologie MeSH
- dospělí MeSH
- Hodgkinova nemoc imunologie virologie MeSH
- infekce virem Epsteina-Barrové virologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- proteiny virové matrix MeSH
- pseudolymfom virologie MeSH
- receptory antigenů B-buněk imunologie MeSH
- replikace viru imunologie MeSH
- virus Epsteinův-Barrové imunologie MeSH
- zárodečné centrum lymfatické uzliny imunologie virologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- EBV-associated membrane antigen, Epstein-Barr virus MeSH Prohlížeč
- proteiny virové matrix MeSH
- receptory antigenů B-buněk MeSH
The relationship between Epstein-Barr virus (EBV) and the germinal centre (GC) of the asymptomatic host remains an enigma. The occasional appearance of EBV-positive germinal centres in some patients, particularly those with a history of immunosuppression, suggests that EBV numbers in the GC are subject to immune control. The relationship, if any, between lymphoid hyperplasia with EBV-positive germinal centres and subsequent or concurrent lymphomagenesis remains to be clarified. As far as the development of EBV-associated Hodgkin's lymphoma is concerned, the suppression of virus replication, mediated by LMP1 on the one hand, and the loss of B-cell receptor signalling on the other, appears to be an important pathogenic mechanism. A further important emerging concept is that alterations in the microenvironment of the EBV-infected B-cell may be important for lymphomagenesis.
Zobrazit více v PubMed
Adler B., Schaadt E., Kempkes B., Zimber-Strobl U., Baier B., Bornkamm G. W. Control of Epstein-Barr virus reactivation by activated CD40 and viral latent membrane protein 1. Proc Natl Acad Sci U S A. 2002;99:437–442. doi: 10.1073/pnas.221439999. PubMed DOI PMC
Amoroso R., Fitzsimmons L., Thomas W. A., Kelly G. L., Rowe M., Bell A. I. Quantitative studies of Epstein-Barr virus-encoded microRNAs provide novel insights into their regulation. J Virol. 2011;85:996–1010. doi: 10.1128/JVI.01528-10. PubMed DOI PMC
Anagnostopoulos I., Hummel M., Kreschel C., Stein H. Morphology, immunophenotype, and distribution of latently and/or productively Epstein-Barr virus-infected cells in acute infectious mononucleosis: implications for the interindividual infection route of Epstein-Barr virus. Blood. 1995;85:744–750. PubMed
Anderton E., Yee J., Smith P., Crook T., White R. E., Allday M. J. Two Epstein-Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumour-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma. Oncogene. 2008;27:421–433. doi: 10.1038/sj.onc.1210668. PubMed DOI
Araujo I., Foss H. D., Hummel M., Anagnostopoulos I., Barbosa H. S., Bittencourt A., Stein H. Frequent expansion of Epstein-Barr virus (EBV) infected cells in germinal centres of tonsils from an area with a high incidence of EBV-associated lymphoma. J Pathol. 1999;187:326–330. doi: 10.1002/(SICI)1096-9896(199902)187:3<326::AID-PATH242>3.0.CO;2-N. PubMed DOI
Armstrong A. A., Alexander F. E., Cartwright R., Angus B., Krajewski A. S., Wright D. H., Brown I., Lee F., Kane E., Jarrett R. F. Epstein-Barr virus and Hodgkin’s disease: further evidence for the three disease hypothesis. Leukemia. 1998;12:1272–1276. doi: 10.1038/sj.leu.2401097. PubMed DOI
Babcock G. J., Decker L. L., Volk M., Thorley-Lawson D. A. EBV persistence in memory B-cells in vivo. Immunity. 1998;9:395–404. doi: 10.1016/S1074-7613(00)80622-6. PubMed DOI
Babcock G. J., Hochberg D., Thorley-Lawson A. D. The expression pattern of Epstein-Barr virus latent genes in vivo is dependent upon the differentiation stage of the infected B-cell. Immunity. 2000;13:497–506. doi: 10.1016/S1074-7613(00)00049-2. PubMed DOI
Balfour H. H., Jr, Odumade O. A., Schmeling D. O., Mullan B. D., Ed J. A., Knight J. A., Vezina H. E., Thomas W., Hogquist K. A. Behavioral, virologic, and immunologic factors associated with acquisition and severity of primary Epstein-Barr virus infection in university students. J Infect Dis. 2013;207:80–88. doi: 10.1093/infdis/jis646. PubMed DOI PMC
Bargou R. C., Emmerich F., Krappmann D., Bommert K., Mapara M. Y., Arnold W., Royer H. D., Grinstein E., Greiner A., other authors Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest. 1997;100:2961–2969. doi: 10.1172/JCI119849. PubMed DOI PMC
Bechtel D., Kurth J., Unkel C., Küppers R. Transformation of BCR-deficient germinal-center B-cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood. 2005;106:4345–4350. doi: 10.1182/blood-2005-06-2342. PubMed DOI
Bräuninger A., Spieker T., Mottok A., Baur A. S., Küppers R., Hansmann M. L. Epstein-Barr virus (EBV)-positive lymphoproliferations in post-transplant patients show immunoglobulin V gene mutation patterns suggesting interference of EBV with normal B-cell differentiation processes. Eur J Immunol. 2003;33:1593–1602. doi: 10.1002/eji.200323765. PubMed DOI
Bräuninger A., Schmitz R., Bechtel D., Renné C., Hansmann M. L., Küppers R. Molecular biology of Hodgkin’s and Reed/Sternberg cells in Hodgkin’s lymphoma. Int J Cancer. 2006;118:1853–1861. doi: 10.1002/ijc.21716. PubMed DOI
Cader F. Z., Vockerodt M., Bose S., Nagy E., Brundler M. A., Kearns P., Murray P. G. The EBV oncogene LMP1 protects lymphoma cells from cell death through the collagen-mediated activation of DDR1. Blood. 2013;122:4237–4245. doi: 10.1182/blood-2013-04-499004. PubMed DOI
Caldwell R. G., Wilson J. B., Anderson S. J., Longnecker R. Epstein-Barr virus LMP2A drives B-cell development and survival in the absence of normal B-cell receptor signals. Immunity. 1998;9:405–411. doi: 10.1016/S1074-7613(00)80623-8. PubMed DOI
Casola S., Otipoby K. L., Alimzhanov M., Humme S., Uyttersprot N., Kutok J. L., Carroll M. C., Rajewsky K. B-cell receptor signal strength determines B-cell fate. Nat Immunol. 2004;5:317–327. doi: 10.1038/ni1036. PubMed DOI
Chaganti S., Bell A. I., Pastor N. B., Milner A. E., Drayson M., Gordon J., Rickinson A. B. Epstein-Barr virus infection in vitro can rescue germinal center B-cells with inactivated immunoglobulin genes. Blood. 2005;106:4249–4252. doi: 10.1182/blood-2005-06-2327. PubMed DOI
Chaganti S., Heath E. M., Bergler W., Kuo M., Buettner M., Niedobitek G., Rickinson A. B., Bell A. I. Epstein-Barr virus colonization of tonsillar and peripheral blood B-cell subsets in primary infection and persistence. Blood. 2009;113:6372–6381. doi: 10.1182/blood-2008-08-175828. PubMed DOI
Countryman J., Miller G. Activation of expression of latent Epstein-Barr herpesvirus after gene transfer with a small cloned subfragment of heterogeneous viral DNA. Proc Natl Acad Sci U S A. 1985;82:4085–4089. doi: 10.1073/pnas.82.12.4085. PubMed DOI PMC
Crawford D. H., Ando I. EB virus induction is associated with B-cell maturation. Immunology. 1986;59:405–409. PubMed PMC
Dojcinov S. D., Venkataraman G., Pittaluga S., Wlodarska I., Schrager J. A., Raffeld M., Hills R. K., Jaffe E. S. Age-related EBV-associated lymphoproliferative disorders in the Western population: a spectrum of reactive lymphoid hyperplasia and lymphoma. Blood. 2011;117:4726–4735. doi: 10.1182/blood-2010-12-323238. PubMed DOI PMC
Dutton A., Reynolds G. M., Dawson C. W., Young L. S., Murray P. G. Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin’s lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol. 2005;205:498–506. doi: 10.1002/path.1725. PubMed DOI
Engels N., Yigit G., Emmerich C. H., Czesnik D., Schild D., Wienands J. Epstein-Barr virus LMP2A signaling in statu nascendi mimics a B-cell antigen receptor-like activation signal. Cell Commun Signal. 2012;10:9. doi: 10.1186/1478-811X-10-9. PubMed DOI PMC
Flavell K. J., Biddulph J. P., Powell J. E., Parkes S. E., Redfern D., Weinreb M., Nelson P., Mann J. R., Young L. S., Murray P. G. South Asian ethnicity and material deprivation increase the risk of Epstein-Barr virus infection in childhood Hodgkin’s disease. Br J Cancer. 2001;85:350–356. doi: 10.1054/bjoc.2001.1872. PubMed DOI PMC
Gires O., Zimber-Strobl U., Gonnella R., Ueffing M., Marschall G., Zeidler R., Pich D., Hammerschmidt W. Latent membrane protein 1 of Epstein-Barr virus mimics a constitutively active receptor molecule. EMBO J. 1997;16:6131–6140. doi: 10.1093/emboj/16.20.6131. PubMed DOI PMC
Glaser S. L., Lin R. J., Stewart S. L., Ambinder R. F., Jarrett R. F., Brousset P., Pallesen G., Gulley M. L., Khan G., other authors Epstein-Barr virus-associated Hodgkin’s disease: epidemiologic characteristics in international data. Int J Cancer. 1997;70:375–382. doi: 10.1002/(SICI)1097-0215(19970207)70:4<375::AID-IJC1>3.0.CO;2-T. PubMed DOI
He B., Raab-Traub N., Casali P., Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol. 2003;171:5215–5224. doi: 10.4049/jimmunol.171.10.5215. PubMed DOI PMC
Hochberg D., Middeldorp J. M., Catalina M., Sullivan J. L., Luzuriaga K., Thorley-Lawson D. A. Demonstration of the Burkitt’s lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proc Natl Acad Sci U S A. 2004;101:239–244. doi: 10.1073/pnas.2237267100. PubMed DOI PMC
Hudnall S. D., Ge Y., Wei L., Yang N. P., Wang H. Q., Chen T. Distribution and phenotype of Epstein-Barr virus-infected cells in human pharyngeal tonsils. Mod Pathol. 2005;18:519–527. doi: 10.1038/modpathol.3800369. PubMed DOI
Jarrett R. F., Gallagher A., Jones D. B., Alexander F. E., Krajewski A. S., Kelsey A., Adams J., Angus B., Gledhill S., Wright D. H. Detection of Epstein-Barr virus genomes in Hodgkin’s disease: relation to age. J Clin Pathol. 1991;44:844–848. doi: 10.1136/jcp.44.10.844. PubMed DOI PMC
Kieff E., Rickinson A. B. Epstein–Barr virus and its replication. In: Knipe D. M., Howley P. M., editors. Fields Virology. 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 2511–2573. Edited by.
Klein U., Dalla-Favera R. Germinal centres: role in B-cell physiology and malignancy. Nat Rev Immunol. 2008;8:22–33. doi: 10.1038/nri2217. PubMed DOI
Kube D., Holtick U., Vockerodt M., Ahmadi T., Haier B., Behrmann I., Heinrich P. C., Diehl V., Tesch H. STAT3 is constitutively activated in Hodgkin cell lines. Blood. 2001;98:762–770. doi: 10.1182/blood.V98.3.762. PubMed DOI
Küppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005;5:251–262. doi: 10.1038/nrc1589. PubMed DOI
Kurth J., Spieker T., Wustrow J., Strickler G. J., Hansmann L. M., Rajewsky K., Küppers R. EBV-infected B-cells in infectious mononucleosis: viral strategies for spreading in the B-cell compartment and establishing latency. Immunity. 2000;13:485–495. doi: 10.1016/S1074-7613(00)00048-0. PubMed DOI
Kurth J., Hansmann M. L., Rajewsky K., Küppers R. Epstein-Barr virus-infected B-cells expanding in germinal centers of infectious mononucleosis patients do not participate in the germinal center reaction. Proc Natl Acad Sci U S A. 2003;100:4730–4735. doi: 10.1073/pnas.2627966100. PubMed DOI PMC
Laichalk L. L., Thorley-Lawson D. A. Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol. 2005;79:1296–1307. doi: 10.1128/JVI.79.2.1296-1307.2005. PubMed DOI PMC
Lin K. I., Lin Y., Calame K. Repression of c-myc is necessary but not sufficient for terminal differentiation of B lymphocytes in vitro. Mol Cell Biol. 2000;20:8684–8695. doi: 10.1128/MCB.20.23.8684-8695.2000. PubMed DOI PMC
MacLennan I. C. Germinal centers. Annu Rev Immunol. 1994;12:117–139. doi: 10.1146/annurev.iy.12.040194.001001. PubMed DOI
Mancao C., Altmann M., Jungnickel B., Hammerschmidt W. Rescue of “crippled” germinal center B-cells from apoptosis by Epstein-Barr virus. Blood. 2005;106:4339–4344. doi: 10.1182/blood-2005-06-2341. PubMed DOI PMC
Martín P., Gomez-Lozano N., Montes S., Salas C., Provencio M., Bellas C. Epstein-Barr virus in the germinal centres of adenopathies affected by classic Hodgkin lymphoma. Histopathology. 2011;59:349–352. PubMed
Martín P., Coronado M. J., Bellas C. Evidence of the intersection of Epstein-Barr virus with germinal center. APMIS. 2012;120:253–254. doi: 10.1111/j.1600-0463.2011.02837.x. PubMed DOI
Maruo S., Zhao B., Johannsen E., Kieff E., Zou J., Takada K. Epstein-Barr virus nuclear antigens 3C and 3A maintain lymphoblastoid cell growth by repressing p16INK4A and p14ARF expression. Proc Natl Acad Sci U S A. 2011;108:1919–1924. doi: 10.1073/pnas.1019599108. PubMed DOI PMC
Miller C. L., Lee J. H., Kieff E., Longnecker R. An integral membrane protein (LMP2) blocks reactivation of Epstein-Barr virus from latency following surface immunoglobulin crosslinking. Proc Natl Acad Sci U S A. 1994;91:772–776. doi: 10.1073/pnas.91.2.772. PubMed DOI PMC
Niedobitek G., Herbst H., Young L. S., Brooks L., Masucci M. G., Crocker J., Rickinson A. B., Stein H. Patterns of Epstein-Barr virus infection in non-neoplastic lymphoid tissue. Blood. 1992;79:2520–2526. PubMed
Niedobitek G., Agathanggelou A., Herbst H., Whitehead L., Wright D. H., Young L. S. Epstein-Barr virus (EBV) infection in infectious mononucleosis: virus latency, replication and phenotype of EBV-infected cells. J Pathol. 1997;182:151–159. doi: 10.1002/(SICI)1096-9896(199706)182:2<151::AID-PATH824>3.0.CO;2-3. PubMed DOI
Niedobitek G., Agathanggelou A., Steven N., Young L. S. Epstein-Barr virus (EBV) in infectious mononucleosis: detection of the virus in tonsillar B lymphocytes but not in desquamated oropharyngeal epithelial cells. Mol Pathol. 2000;53:37–42. doi: 10.1136/mp.53.1.37. PubMed DOI PMC
Oyama T., Ichimura K., Suzuki R., Suzumiya J., Ohshima K., Yatabe Y., Yokoi T., Kojima M., Kamiya Y., other authors Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients. Am J Surg Pathol. 2003;27:16–26. doi: 10.1097/00000478-200301000-00003. PubMed DOI
Oyama T., Yamamoto K., Asano N., Oshiro A., Suzuki R., Kagami Y., Morishima Y., Takeuchi K., Izumo T., other authors Age-related EBV-associated B-cell lymphoproliferative disorders constitute a distinct clinicopathologic group: a study of 96 patients. Clin Cancer Res. 2007;13:5124–5132. doi: 10.1158/1078-0432.CCR-06-2823. PubMed DOI
Panagopoulos D., Victoratos P., Alexiou M., Kollias G., Mosialos G. Comparative analysis of signal transduction by CD40 and the Epstein-Barr virus oncoprotein LMP1 in vivo. J Virol. 2004;78:13253–13261. doi: 10.1128/JVI.78.23.13253-13261.2004. PubMed DOI PMC
Prince S., Keating S., Fielding C., Brennan P., Floettmann E., Rowe M. Latent membrane protein 1 inhibits Epstein-Barr virus lytic cycle induction and progress via different mechanisms. J Virol. 2003;77:5000–5007. doi: 10.1128/JVI.77.8.5000-5007.2003. PubMed DOI PMC
Rickinson A., Kieff E. Epstein–Barr virus. In: Knipe D. M., Howley P. M., editors. Fields Virology. 4th edn. Philadelphia: Lippincott Williams & Wilkins; 2001. pp. 2575–2627. Edited by.
Roughan J. E., Thorley-Lawson D. A. The intersection of Epstein-Barr virus with the germinal center. J Virol. 2009;83:3968–3976. doi: 10.1128/JVI.02609-08. PubMed DOI PMC
Roughan J. E., Torgbor C., Thorley-Lawson D. A. Germinal center B-cells latently infected with Epstein-Barr virus proliferate extensively but do not increase in number. J Virol. 2010;84:1158–1168. doi: 10.1128/JVI.01780-09. PubMed DOI PMC
Schaadt E., Baier B., Mautner J., Bornkamm G. W., Adler B. Epstein-Barr virus latent membrane protein 2A mimics B-cell receptor-dependent virus reactivation. J Gen Virol. 2005;86:551–559. doi: 10.1099/vir.0.80440-0. PubMed DOI
Skalska L., White R. E., Franz M., Ruhmann M., Allday M. J. Epigenetic repression of p16(INK4A) by latent Epstein-Barr virus requires the interaction of EBNA3A and EBNA3C with CtBP. PLoS Pathog. 2010;6:e1000951. doi: 10.1371/journal.ppat.1000951. PubMed DOI PMC
Swanson-Mungerson M. A., Caldwell R. G., Bultema R., Longnecker R. Epstein-Barr virus LMP2A alters in vivo and in vitro models of B-cell anergy, but not deletion, in response to autoantigen. J Virol. 2005;79:7355–7362. doi: 10.1128/JVI.79.12.7355-7362.2005. PubMed DOI PMC
Takada K., Shimizu N., Sakuma S., Ono Y. Trans activation of the latent Epstein-Barr virus (EBV) genome after transfection of the EBV DNA fragment. J Virol. 1986;57:1016–1022. PubMed PMC
Thorley-Lawson D. A. Epstein-Barr virus: exploiting the immune system. Nat Rev Immunol. 2001;1:75–82. doi: 10.1038/35095584. PubMed DOI
Thorley-Lawson D. A., Gross A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med. 2004;350:1328–1337. doi: 10.1056/NEJMra032015. PubMed DOI
Thorley-Lawson D. A., Duca K. A., Shapiro M. Epstein-Barr virus: a paradigm for persistent infection – for real and in virtual reality. Trends Immunol. 2008;29:195–201. doi: 10.1016/j.it.2008.01.006. PubMed DOI
Vockerodt M., Morgan S. L., Kuo M., Wei W., Chukwuma M. B., Arrand J. R., Kube D., Gordon J., Young L. S., other authors The Epstein–Barr virus oncoprotein, latent membrane protein-1, reprograms germinal centre B-cells towards a Hodgkin’s Reed–Sternberg-like phenotype. J Pathol. 2008;216:83–92. doi: 10.1002/path.2384. PubMed DOI
Vockerodt M., Wei W., Nagy E., Prouzova Z., Schrader A., Kube D., Rowe M., Woodman C. B., Murray P. G. Suppression of the LMP2A target gene, EGR-1, protects Hodgkin’s lymphoma cells from entry to the EBV lytic cycle. J Pathol. 2013;230:399–409. doi: 10.1002/path.4198. PubMed DOI
Vrzalikova K., Vockerodt M., Leonard S., Bell A., Wei W., Schrader A., Wright K. L., Kube D., Rowe M., other authors Down-regulation of BLIMP1 by the EBV oncogene, LMP-1, disrupts the plasma cell differentiation program and prevents viral replication in B-cells: implications for the pathogenesis of EBV-associated B-cell lymphomas. Blood. 2011;117:5907–5917. doi: 10.1182/blood-2010-09-307710. PubMed DOI PMC
Weiss L. M., Movahed L. A., Warnke R. A., Sklar J. Detection of Epstein-Barr viral genomes in Reed-Sternberg cells of Hodgkin’s disease. N Engl J Med. 1989;320:502–506. doi: 10.1056/NEJM198902233200806. PubMed DOI
White R. E., Rämer P. C., Naresh K. N., Meixlsperger S., Pinaud L., Rooney C., Savoldo B., Coutinho R., Bödör C., other authors EBNA3B-deficient EBV promotes B-cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest. 2012;122:1487–1502. doi: 10.1172/JCI58092. PubMed DOI PMC
Wu T. C., Mann R. B., Charache P., Hayward S. D., Staal S., Lambe B. C., Ambinder R. F. Detection of EBV gene expression in Reed-Sternberg cells of Hodgkin’s disease. Int J Cancer. 1990;46:801–804. doi: 10.1002/ijc.2910460509. PubMed DOI
Young L. S., Murray P. G. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene. 2003;22:5108–5121. doi: 10.1038/sj.onc.1206556. PubMed DOI
Young L. S., Rickinson A. B. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–768. doi: 10.1038/nrc1452. PubMed DOI