Beta2-microglobulin as a diagnostic marker in cerebrospinal fluid: a follow-up study

. 2014 ; 2014 () : 495402. [epub] 20140508

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24895473

Beta2-Microglobulin ( β 2-m) is a low molecular weight protein occurring in all body fluids. Its concentration increases in various pathologies. Increased values in cerebrospinal fluid (CSF) are ascribed to an activation of immune system. Using immunoturbidimetry, we examined concentrations of beta2-microglobulin in cerebrospinal fluid in a large group of 6274 patients with defined neurological diseases. Cell counts, total protein, albumin, glucose, lactic acid, immunoglobulins concentrations, and isofocusing (IEF) were also evaluated. We found substantial changes of CSF β 2-m concentrations in purulent meningitis, leptomeningeal metastasis, viral meningitis/encephalitis, and neuroborreliosis, while in multiple sclerosis these changes were not significant. Intrathecal synthesis and immune activation were present in these clinical entities. A new normative study enables better understanding of beta2-microglobulin behavior in CSF.

Zobrazit více v PubMed

Becker JW, Reeke GN., Jr. Three-dimensional structure of β 2-microglobulin. Proceedings of the National Academy of Sciences of the United States of America. 1985;82(12):4225–4229. PubMed PMC

Bicknell DC, Rowan A, Bodmer WF. β 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors. Proceedings of the National Academy of Sciences of the United States of America. 1994;91(11):4751–4755. PubMed PMC

Vivian JP, Duncan RC, Berry R, et al. Killer cell immunoglobulin-like receptor 3DL1-mediated recognition of human leukocyte antigen B. Nature. 2011;479(7373):401–405. PubMed PMC

Lu X, Gibbs JS, Hickman HD, et al. Endogenous viral antigen processing generates peptide-specific MHC class I cell-surface clusters. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(38):15407–15412. PubMed PMC

Guder WG, Hofmann W. Clinical role of urinary low molecular weight proteins: their diagnostic and prognostic implications. Scandinavian Journal of Clinical and Laboratory Investigation. 2008;68(241):95–98. PubMed

Lemancewicz D, Bolkun L, Jablonska E, et al. The role of interleukin-17A and interleukin-17E in multiple myeloma patients. Medical Science Monitor. 2012;18(1):BR54–BR59. PubMed PMC

Olsen NJ, Li QZ, Quan J, Wang L, Mutwally A, Karp DR. Autoantibody profiling to follow evolution of lupus syndromes. Arthritis Research & Therapy. 2012;14:p. R174. PubMed PMC

Duek A, Shvidel L, Braester A, Berrebi A. Clinical and Immunologic aspects of B chronic lymphocytic leukemia associated with autoimmune disorders. Israel Medical Association Journal. 2006;8(12):828–831. PubMed

Kwon H-K, Pyun S-B, Cho WY, Boo CS. Carpal tunnel syndrome and peripheral polyneuropathy in patients with end stage kidney disease. Journal of Korean Medical Science. 2011;26(9):1227–1230. PubMed PMC

Neirynck N, Eloot S, Glorieu G, et al. Estimated glomerular filtration rate is a poor predictor of the concentration of middle molecular weight uremic solutes in chronic kidney disease. PLoS ONE. 2012;7(8)e44201 PubMed PMC

Mangione P, Esposito G, Relini A, et al. Structure, folding dynamics, and amyloidogenesis of D76N β 2-microglobulin: roles of shear flow, hydrophobic surfaces, and α-crystallin. The Journal of Biological Chemistry. 2013;288(43):30917–30930. PubMed PMC

Nolen BM, Orlichenko LS, Marrangoni A, et al. An extensive targeted proteomic analysis of disease-related protein biomarkers in urine from healthy donors. PLoS ONE. 2013;8(5)e63368 PubMed PMC

de Borst MH, Nauta FL, Vogt L, Laverman GD, Gansevoort RT, Navis G. Indomethacin reduces glomerular and tubular damage markers but not renal inflammation in chronic kidney disease patients: a post-hoc analysis. PLoS ONE. 2012;7(5)e37957 PubMed PMC

Lei L, Chang X, Rentschler G, et al. A polymorphism in metallothionein 1A (MT1A) is associated with cadmium-related excretion of urinary beta2 microglobulin. Toxicology and Applied Pharmacology. 2012;265:373–379. PubMed

Peters HPE, van den Brand JAJG, Wetzels JFM. Urinary excretion of low-molecular-weight proteins as prognostic markers in IgA nephropathy. Netherlands Journal of Medicine. 2009;67(2):54–61. PubMed

Branten AJW, Du Buf-Vereijken PW, Klasen IS, et al. Urinary excretion of β2-microglobulin and IgG predict prognosis in idiopathic membranous nephropathy: a validation study. Journal of the American Society of Nephrology. 2005;16(1):169–174. PubMed

Sobek O, Adam P, Koudelková M, Štourač P, Mareš J. Algoritmus vyšetření likvoru v návaznosti na doporučení Sekce neuroimunologie a likvorologie České neurologické společnosti JEP. [The algorithm of CSF examination according to the recommendation of the Committee of CSF and Neuroimmunology of the Czech Neurological Society] Česká a Slovenská Neurologie a Neurochirurgie. 2012;75(2):159–163.

Hegen H, Deisenhammer F. Cerebrospinal fluid biomarkers in bacterial meningitis. LaboratoriumsMedizin. 2009;33(6):321–331.

Hühmer AF, Biringer RG, Amato H, Fonteh AN, Harrington MG. Protein analysis in human cerebrospinal fluid: physiological aspects, current progress and future challenges. Disease Markers. 2006;22(1-2):3–26. PubMed PMC

Thompson EJ. Proteins of the Cerebrospinal Fluid: Analysis & Interpretation in the Diagnosis and Treatment of Neurological Disease. Academic Press; 2006.

Kim YO, Kang JS, Youm MH, Jong Woo Y. Diagnostic capability of CSF ferritin in children with meningitis. Pediatric Neurology. 2003;28(4):271–276. PubMed

Makoo ZB, Ahadi N, Hasani A, Makoo RB, Mashrabi O. Cerebrospinal fluid (CSF) ferritin for differentiation of aseptic and bacterial meningitis in adults. American Journal of Infectious Diseases. 2010;6(4):98–102.

Alarcon A, Garcia-Alix A, Cabañas F, et al. Beta2-microglobulin concentrations in cerebrospinal fluid correlate with neuroimaging findings in newborns with symptomatic congenital cytomegalovirus infection. European Journal of Pediatrics. 2006;165(9):636–645. PubMed

Baquero-Artigao F, Méndez A, Del Castillo F, Velázquez R. Cerebrospinal fluid β-microglobulin values in perinatally acquired cytomegalovirus infection. Pediatric Infectious Disease Journal. 2004;23(9):891–892. PubMed

Tagarro A, García-Alix A, Alarcón A, Hernanz A, Quero J. Congenital syphilis: β 2-microglobulin in cerebrospinal fluid and diagnosis of neurosyphilis in an affected newborn. Journal of Perinatal Medicine. 2005;33(1):79–82. PubMed

Nyamweya S, Townend J, Zaman A, et al. Are plasma biomarkers of immune activation predictive of HIV progression: a longitudinal comparison and analyses in HIV-1 and HIV-2 infections? PLoS ONE. 2012;7(9) PubMed PMC

Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L. CSF amyloid β42 and tau levels correlate with AIDS dementia complex. Neurology. 2005;65(9):1490–1492. PubMed

Brew BJ, Halman M, Catalan J, et al. Factor in AIDS dementia complex trial design: results and lessons from the abacavir trial. PLoS Clinical Trials. 2007;2(3, article e13) PubMed PMC

Yilmaz A, Fuchs D, Hagberg L, et al. Cerebrospinal fluid HIV-1 RNA, intrathecal immunoactivation, and drug concentrations after treatment with a combination of saquinavir, nelfinavir, and two nucleoside analogues: the M61022 study. BMC Infectious Diseases. 2006;6, article 63 PubMed PMC

Cysique LA, Brew BJ, Halman M, et al. Undetectable cerebrospinal fluid HIV RNA and β-2 microglobulin do not indicate inactive AIDS dementia complex in highly active antiretroviral therapy-treated patients. Journal of Acquired Immune Deficiency Syndromes. 2005;39(4):426–429. PubMed

Morris KA, Davies NW, Brew BJ. A guide to interpretation of neuroimmunological biomarkers in the combined antiretroviral therapy-era of HIV central nervous system disease. Neurobehavioral HIV Medicine. 2010;2:59–72.

Hansson SF, Puchades M, Blennow K, Sjögren M, Davidsson P. Validation of a prefractionation method followed by two-dimensional electrophoresis—applied to cerebrospinal fluid proteins from frontotemporal dementia patients. Proteome Science. 2004;2, article 7 PubMed PMC

Zhang J, Goodlett DR, Montine TJ. Proteomic biomarker discovery in cerebrospinal fluid for neurodegenerative diseases. Journal of Alzheimer’s Disease. 2005;8(4):377–386. PubMed

Hunot S, Hirsch EC, Isacson I, et al. Neuroinflammatory processes in Parkinson’s disease. Annals of Neurology. 2003;53(3):S49–S60. PubMed

Mattsson N, Insel P, Nosheny R, et al. CSF protein biomarkers predicting longitudinal reduction of CSF β-amyloid42 in cognitively healthy elders. Translational Psychiatry. 2013;3, article e293 PubMed PMC

Kim JY, Park SC, Lee JK, Choi SJ, Hahm KS, Park Y. Novel antibacterial activity of β 2 microglobulin in human amniotic fluid. PLoS ONE. 2012;7(11) PubMed PMC

Bořecká K, Adam P, Sobek O, Hajduková L, Lánská V, Nekola O. Coefficient of energy balance: effective tool for early differential diagnosis of CNS diseases. BioMed Research International. 2013;2013:8 pages.745943 PubMed PMC

Reiber H. The hyperbolic function: a mathematical solution of the protein flux/CSF flow model for blood-CSF barrier function. Journal of the Neurological Sciences. 1994;126(2):243–245.

Adam P, Táborský L, Sobek O, et al. Cerebrospinal fluid. Advances in Clinical Chemistry. 2001;36:1–62. PubMed

Felgenhauer K. Laboratory of neurological diseases. In: Thomas L, editor. Clinical Laboratory Diagnostics. Use and Assessment of Clinical Laboratory Results. Franfurkt, Germany: TH-Books Verlagsgesellschaft mbH; 1998. pp. 1308–1326.

Seyfert S, Kunzmann V, Schwertfeger N, Koch HC, Faulstich A. Determinants of lumbar CSF protein concentration. Journal of Neurology. 2002;249(8):1021–1026. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...