Two-step separation of nostotrebin 6 from cultivated soil cyanobacterium (Nostoc sp.) by high performance countercurrent chromatography

. 2014 Jun 25 ; 19 (7) : 8773-87. [epub] 20140625

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24968333

High performance countercurrent chromatography (HPCCC) was successfully applied for the separation of nostotrebin 6 from cultivated soil cyanobacteria in a two-step operation. A two-phase solvent system composed of n-hexane-ethyl acetate-methanol-water (4:5:4:5, v/v/v/v) was employed for the HPCCC separation. In the first-step operation, its neutral upper phase was used as stationary phase and its basic lower phase (1% NH3 in lower phase) was employed as mobile phase at a flow rate of 1 mL/min. In the second operation step, its neutral upper phase was used as stationary phase, whereas both its neutral lower phase and basic lower phase were employed as mobile phase with a linear gradient elution at a flow rate of 0.8 mL/min. The revolution speed and temperature of the separation column were 1,000 rpm and 30 °C, respectively. Using HPCCC followed by clean-up on Sephadex LH-20 gel, 4 mg of nostotrebin 6 with a purity of 99% as determined by HPLC/DAD-ESI-HRMS was obtained from 100 mg of crude extract. The chemical identity of the isolated compound was confirmed by comparing its spectroscopic data (UV, ESI-HRMS, ESI-HRMS2) with those of an authentic standard and data available in the literature.

Zobrazit více v PubMed

Chlipala G.E., Mo S., Orjala J. Chemodiversity in freshwater and terrestrial cyanobacteria-a source for drug discovery. Curr. Drug Targets. 2011;12:1654–1673. doi: 10.2174/138945011798109455. PubMed DOI PMC

Grond S., Meurer G. Exploiting green treasures. Chem. Biol. 2007;14:469–471. doi: 10.1016/j.chembiol.2007.05.002. PubMed DOI

Rastogi R.P., Sinha R.P. Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 2009;27:521–539. PubMed

Singh R.K., Tiwari S.P., Rai A.K., Mohapatra T.M. Cyanobacteria: An emerging source for drug discovery. J. Antibiot. 2011;64:401–412. doi: 10.1038/ja.2011.21. PubMed DOI

Mundt S., Kreitlow S., Nowotny A., Effmert U. Biochemical and pharmacological investigations of selected cyanobacteria. Int. J. Hyg. Environ. Health. 2001;203:327–334. doi: 10.1078/1438-4639-00045. PubMed DOI

Plaza M., Santoyo S., Jaime L., Reina G.G.B., Herrero M., Senorans F.J., Ibanez E. Screening for bioactive compounds from algae. J. Pharm. Biomed. 2010;51:450–455. doi: 10.1016/j.jpba.2009.03.016. PubMed DOI

Klejdus B., Kopecký J., Benesova L., Vacek J. Solid-phase/supercritical-fluid extraction for liquid chromatography of phenolic compounds in freshwater microalgae and selected cyanobacterial species. J. Chromatogr. A. 2009;1216:763–771. doi: 10.1016/j.chroma.2008.11.096. PubMed DOI

Onofrejova L., Vasickova J., Klejdus B., Stratil P., Misurcova L., Kracmar S., Kopecký J., Vacek J. Bioactive phenols in algae: The application of pressurized-liquid and solid-phase extraction techniques. J. Pharm. Biomed. 2010;51:464–470. doi: 10.1016/j.jpba.2009.03.027. PubMed DOI

Ragan M.A., Glombitza K.W. Phlorotannins, brown algal polyphenols. In: Round F.E., Chapman D.J., editors. Progress in Phycological Research. Biopress; Bristol, UK: 1986. pp. 129–241.

La Barre S., Potin P., Leblanc C., Delage L. The halogenated metabolism of brown algae (phaeophyta), its biological importance and its environmental significance. Mar. Drugs. 2010;8:988–1010. doi: 10.3390/md8040988. PubMed DOI PMC

Vacek J., Snoblova M., Klejdus B. A short introduction to algal and cyanobacterial constituents-the occurrence of phenolic metabolites (in czech) Čes. Slov. Farm. 2009;58:103–108.

Zelik P., Lukesova A., Voloshko L., Stys D., Kopecký J. Screening for acetylcholinesterase inhibitory activity in cyanobacteria of the genus Nostoc. J. Enzym. Inhib. Med. Chem. 2009;24:531–536. doi: 10.1080/14756360802234836. PubMed DOI

Zelik P., Lukesova A., Cejka J., Budesinsky M., Havlicek V., Cegan A., Kopecký J. Nostotrebin 6, a bis(cyclopentenedione) with cholinesterase inhibitory activity isolated from Nostoc sp str. Lukesova 27/97. J. Enzym. Inhib. Med. Chem. 2010;25:414–420. doi: 10.3109/14756360903213481. PubMed DOI

Massoud F., Gauthier S. Update on the pharmacological treatment of Alzheimer's disease. Curr. Neuropharmacol. 2010;8:69–80. doi: 10.2174/157015910790909520. PubMed DOI PMC

Greig N.H., Utsuki T., Yu Q., Zhu X., Holloway H.W., Perry T., Lee B., Ingram D.K., Lahiri D.K. A new therapeutic target in Alzheimer's disease treatment: Attention to butyrylcholinesterase. Curr. Med. Res. Opin. 2001;17:159–165. PubMed

Ito Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A. 2005;1065:145–168. doi: 10.1016/j.chroma.2004.12.044. PubMed DOI

Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.) J. Agric. Food Chem. 2005;53:2511–2517. doi: 10.1021/jf0479766. PubMed DOI

Tapia A., Cheel J., Theoduloz C., Rodríguez J., Schmeda-Hirschmann G., Gerth A., Wilken D., Jordan M., Jiménez-González E., Gomez-Kosky R., et al. Free radical scavengers from Cymbopogon citratus (DC.) Stapf. plants cultivated in bioreactors by the temporary immersion (TIS)-principle. Z. Naturforsch. C. 2007;62:447–457. PubMed

Spórna-Kucab A., Ignatova S., Garrard I., Wybraniec S. Versatile solvent systems for the separation of betalains from processed Beta vulgaris L. juice using counter-current chromatography. J. Chromatogr. B. 2013;941:54–61. doi: 10.1016/j.jchromb.2013.10.001. PubMed DOI

Costa Fd., Garrard I., da Silva A.J., Leitão G.G. Changes in the mobile phase composition on a stepwise counter-current chromatography elution for the isolation of flavonoids from Siparuna glycycarpa. J. Sep. Sci. 2013;36:2253–2259. doi: 10.1002/jssc.201201054. PubMed DOI

Du Q.Z., Jerz G., Waibel R., Winterhalter P. Isolation of dammarane saponins from Panax notoginseng by high-speed counter-current chromatography. J. Chromatogr. A. 2003;1008:173–180. doi: 10.1016/S0021-9673(03)00988-9. PubMed DOI

Niu L., Xie Z., Cai T., Wu P., Xue P., Chen X., Wu Z., Ito Y., Li F., Yang F. Preparative isolation of alkaloids from Corydalis bungeana Turcz. by high-speed counter-current chromatography using stepwise elution. J. Sep. Sci. 2011;34:987–994. doi: 10.1002/jssc.201000785. PubMed DOI PMC

Chen F., Li H.B., Wong R.N., Ji B., Jiang Y. Isolation and purification of the bioactive carotenoid zeaxanthin from the microalga Microcystis aeruginosa by high-speed counter-current chromatography. J. Chromatogr. A. 2005;1064:183–186. PubMed

Li H.B., Chen F. Preparative isolation and purification of astaxanthin from the microalga Chlorococcum sp. by high-speed counter-current chromatography. J. Chromatogr. A. 2001;925:133–137. doi: 10.1016/S0021-9673(01)01022-6. PubMed DOI

Li H.B., Fan K.W., Chen F. Isolation and purification of canthaxanthin from the microalga Chlorella zofingiensis by high-speed counter-current chromatography. J. Sep. Sci. 2006;29:699–703. doi: 10.1002/jssc.200500365. PubMed DOI

Lu H.T., Jiang Y., Chen F. Preparative separation and purification of squalene from the microalga Thraustochytrium ATCC 26185 by high-speed counter-current chromatography. J. Chromatogr. A. 2003;994:37–43. doi: 10.1016/S0021-9673(03)00454-0. PubMed DOI

Ito Y., Conway W.D. Experimental observations of the hydrodynamic behavior of solvent systems in high-speed counter-current chromatography. III. Effects of physical properties of the solvent systems and operating temperature on the distribution of two-phase solvent systems. J. Chromatogr. A. 1984;301:405–414. doi: 10.1016/S0021-9673(01)89214-1. PubMed DOI

Berthod A., Maryutina T., Spivakov B., Shpigun O., Sutherland I.A. Countercurrent chromatography in analytical chemistry. Pure Appl. Chem. 2009;81:355–387.

Oka F., Oka H., Ito Y. Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J. Chromatogr. A. 1991;538:99–108. doi: 10.1016/S0021-9673(01)91626-7. PubMed DOI

Antonopoulou S., Nomikos T., Oikonomou A., Kyriacou A., Andriotis M., Fragopoulou E., Pantazidou A. Characterization of bioactive glycolipids from Scytonema julianum (cyanobacteria) Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 2005;140:219–231. doi: 10.1016/j.cbpc.2004.10.006. PubMed DOI

Wada H., Murata N. Membrane lipids in cyanobacteria. In: Siegenthaler P.A., Murata N., editors. Lipids in Photosynthesis: Structure, Function and Genetics. volume 6. Springer; Dordrecht, The Netherlands: 1998. pp. 65–81.

Pacwa-Płociniczak M., Płaza G.A., Piotrowska-Seget Z., Cameotra S.S. Environmental applications of biosurfactants: Recent advances. Int. J. Mol. Sci. 2011;12:633–654. doi: 10.3390/ijms12010633. PubMed DOI PMC

Kiełbowicz G., Gładkowski W., Chojnacka A., Wawrzeńczyk C. A simple method for positional analysis of phosphatidylcholine. Food Chem. 2012;135:2542–2548. doi: 10.1016/j.foodchem.2012.07.005. PubMed DOI

Liu R., Li A., Sun A. Preparative isolation and purification of hydroxyanthraquinones and cinnamic acid from the chinese medicinal herb Rheum officinale Baill. by high-speed counter-current chromatography. J. Chromatogr. A. 2004;1052:217–221. doi: 10.1016/j.chroma.2004.08.101. PubMed DOI

Wang T., Jiang X., Yang L., Wu S. pH-gradient counter-current chromatography isolation of natural antioxidant chlorogenic acid from Lonicera japonica Thumb. using an upright coil planet centrifuge with three multi-layer coils connected in series. J. Chromatogr. A. 2008;1180:53–58. doi: 10.1016/j.chroma.2007.11.112. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...