Detection of pathogenic clostridia in biogas plant wastes
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- biopaliva mikrobiologie MeSH
- Clostridium klasifikace genetika růst a vývoj izolace a purifikace MeSH
- odpadní produkty analýza MeSH
- rostliny mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- biopaliva MeSH
- odpadní produkty MeSH
As the number of biogas plants has grown rapidly in the last decade, the amount of potentially contaminated wastes with pathogenic Clostridium spp. has increased as well. This study reports the results from examining 203 biogas plant wastes (BGWs). The following Clostridium spp. with different frequencies could be isolated via a new enrichment medium (Krüne medium) and detected by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS): Clostridium perfringens (58 %) then Clostridium bifermentans (27 %), Clostridium tertium (23 %) and Clostridium butyricum (19 %), Clostridium cadaveris (15 %), Clostridium parapurificum (6 %), Clostridium glycolicum (5 %), Clostridium baratii (4 %), Clostridium sporogenes (2 %), Clostridium sordellii (1 %) and Clostridium subterminale (0.5 %). The mean most probable number (MPN) count of sulfite reducing bacteria was between 10(3) and 10(4)/mL, and the higher the MPN, the more pathogenic Clostridium spp. were present. Also, real-time PCR was used to be compared with culture method for C. perfringens, C. bifermentans, C. butyricum, C. sporogenes/Clostridium botulinum and C. sordellii. Although real-time PCR was more sensitive than the culture method, both systems improve the recovery rate but in different ways and are useful to determine pathogenic clostridia in biogas plants. In conclusion, BGWs could present a biohazard risk of clostridia for humans and animals.
Zobrazit více v PubMed
J Air Waste Manag Assoc. 2006 Feb;56(2):137-43 PubMed
Anaerobe. 2013 Apr;20:74-8 PubMed
Microbiol Immunol. 1996;40(1):5-11 PubMed
Infect Dis Obstet Gynecol. 2012;2012:972845 PubMed
Appl Environ Microbiol. 2009 Oct;75(20):6457-61 PubMed
Water Res. 2005 Dec;39(20):4879-86 PubMed
FEMS Immunol Med Microbiol. 1999 Jul;24(3):253-8 PubMed
Curr Microbiol. 2013 Apr;66(4):350-8 PubMed
Int J Syst Bacteriol. 1994 Oct;44(4):812-26 PubMed
Vet Microbiol. 2008 Feb 5;127(1-2):179-85 PubMed
J Biotechnol. 2008 Aug 31;136(1-2):91-101 PubMed
J Appl Microbiol. 2010 Nov;109(5):1549-65 PubMed
Appl Biochem Biotechnol. 2003 Apr-Jun;109(1-3):139-53 PubMed
Bioresour Technol. 2008 Nov;99(16):7859-65 PubMed
Avian Dis. 2013 Mar;57(1):29-35 PubMed
Vet Microbiol. 2004 May 20;100(1-2):11-6 PubMed
Water Sci Technol. 2005;52(1-2):93-9 PubMed
Microbiol Immunol. 2002;46(5):353-8 PubMed
Vet Rec. 2013 Jan 12;172(2):47 PubMed
Pathogenic bacteria in biogas plants using cattle, swine, and poultry manure
Detection of Clostridium botulinum in liquid manure and biogas plant wastes