Dominance of Methanosarcinales phylotypes and depth-wise distribution of methanogenic community in fresh water sediments of Sitka stream from Czech Republic
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Denaturing Gradient Gel Electrophoresis MeSH
- DNA, Archaeal chemistry genetics MeSH
- Phylogeny MeSH
- Geologic Sediments microbiology MeSH
- Methanosarcinales isolation & purification MeSH
- Molecular Sequence Data MeSH
- Rivers MeSH
- DNA, Ribosomal chemistry genetics MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sequence Analysis, DNA MeSH
- Cluster Analysis MeSH
- Biota * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Names of Substances
- DNA, Archaeal MeSH
- DNA, Ribosomal MeSH
- RNA, Ribosomal, 16S MeSH
The variation in the diversity of methanogens in sediment depths from Sitka stream was studied by constructing a 16S rRNA gene library using methanogen-specific primers and a denaturing gradient gel electrophoresis (DGGE)-based approach. A total of nine different phylotypes from the 16S rRNA library were obtained, and all of them were clustered within the order Methanosarcinales. These nine phylotypes likely represent nine new species and at least 5-6 new genera. Similarly, DGGE analysis revealed an increase in the diversity of methanogens with an increase in sediment depth. These results suggest that Methanosarcinales phylotypes might be the dominant methanogens in the sediment from Sitka stream, and the diversity of methanogens increases as the depth increases. Results of the present study will help in making effective strategies to monitor the dominant methanogen phylotypes and methane emissions in the environment.
See more in PubMed
Appl Environ Microbiol. 2007 Jul;73(13):4206-10 PubMed
Appl Environ Microbiol. 2009 Dec;75(23):7537-41 PubMed
Mol Biol Evol. 1995 Sep;12(5):823-33 PubMed
Genome Res. 2011 Mar;21(3):494-504 PubMed
Appl Environ Microbiol. 1998 Dec;64(12):4983-9 PubMed
Microb Ecol. 2007 Nov;54(4):697-704 PubMed
Syst Appl Microbiol. 2007 Apr;30(3):239-54 PubMed
Environ Microbiol Rep. 2009 Oct;1(5):285-92 PubMed
Gene. 2012 Feb 1;493(1):13-7 PubMed
Microb Ecol. 2012 Jul;64(1):131-9 PubMed
Antonie Van Leeuwenhoek. 2011 May;99(4):739-51 PubMed
Appl Microbiol Biotechnol. 2013 Sep;97(17):7553-62 PubMed
Appl Environ Microbiol. 1997 Dec;63(12):4729-33 PubMed
Environ Microbiol. 2005 Aug;7(8):1139-49 PubMed
Proc Natl Acad Sci U S A. 2004 Jul 27;101(30):11030-5 PubMed
J Mol Evol. 1980 Dec;16(2):111-20 PubMed
Microb Ecol. 2008 Aug;56(2):390-4 PubMed
FEMS Microbiol Ecol. 2009 Oct;70(1):87-98 PubMed
Environ Microbiol. 2011 Aug;13(8):2336-41 PubMed
Microb Ecol. 2011 Jul;62(1):1-13 PubMed
Appl Environ Microbiol. 2005 Aug;71(8):4592-601 PubMed
Anaerobe. 2000 Aug;6(4):205-26 PubMed
Environ Microbiol. 2006 Apr;8(4):709-19 PubMed
Mol Biol Evol. 1987 Jul;4(4):406-25 PubMed
Lett Appl Microbiol. 2009 Aug;49(2):274-7 PubMed
Mol Biol Evol. 2011 Oct;28(10):2731-9 PubMed
J Microbiol Methods. 2003 Nov;55(2):337-49 PubMed
J Environ Sci (China). 2008;20(2):224-30 PubMed
FEMS Microbiol Lett. 2004 Mar 19;232(2):153-63 PubMed
PLoS One. 2013 Nov 20;8(11):e80804 PubMed
FEMS Microbiol Ecol. 2012 Jul;81(1):243-54 PubMed
Appl Environ Microbiol. 2006 Feb;72(2):1663-6 PubMed
Environ Microbiol. 2004 Mar;6(3):274-87 PubMed
FEMS Microbiol Ecol. 2011 Sep;77(3):533-45 PubMed
FEMS Microbiol Ecol. 2002 Jan 1;39(1):17-21 PubMed
Evolution. 1985 Jul;39(4):783-791 PubMed
Methods Enzymol. 1996;266:131-41 PubMed
Environ Microbiol. 2009 Mar;11(3):657-68 PubMed
Lett Appl Microbiol. 2009 Mar;48(3):386 PubMed
Geobiology. 2008 Aug;6(4):376-93 PubMed