Adenylyl cyclase signaling in the developing chick heart: the deranging effect of antiarrhythmic drugs
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25045681
PubMed Central
PMC4090571
DOI
10.1155/2014/463123
Knihovny.cz E-zdroje
- MeSH
- adenylátcyklasy biosyntéza genetika MeSH
- antiarytmika aplikace a dávkování MeSH
- karbazoly aplikace a dávkování MeSH
- karvedilol MeSH
- kur domácí genetika růst a vývoj MeSH
- kuřecí embryo MeSH
- metoprolol aplikace a dávkování MeSH
- myokard enzymologie MeSH
- propanolaminy aplikace a dávkování MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- srdce účinky léků růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenylátcyklasy MeSH
- adenylyl cyclase type V MeSH Prohlížeč
- antiarytmika MeSH
- karbazoly MeSH
- karvedilol MeSH
- metoprolol MeSH
- propanolaminy MeSH
The adenylyl cyclase (AC) signaling system plays a crucial role in the regulation of cardiac contractility. Here we analyzed the key components of myocardial AC signaling in the developing chick embryo and assessed the impact of selected β-blocking agents on this system. Application of metoprolol and carvedilol, two commonly used β-blockers, at embryonic day (ED) 8 significantly downregulated (by about 40%) expression levels of AC5, the dominant cardiac AC isoform, and the amount of Gsα protein at ED9. Activity of AC stimulated by forskolin was also significantly reduced under these conditions. Interestingly, when administered at ED4, these drugs did not produce such profound changes in the myocardial AC signaling system, except for markedly increased expression of Giα protein. These data indicate that β-blocking agents can strongly derange AC signaling during the first half of embryonic heart development.
Department of Physiology Faculty of Science Charles University Prague 128 43 Prague Czech Republic
Institute of Physiology Academy of Sciences of the Czech Republic 142 20 Prague Czech Republic
Zobrazit více v PubMed
Nanda S, Nelson-Piercy C, Mackillop L. Cardiac disease in pregnancy. Clinical Medicine, Journal of the Royal College of Physicians of London. 2012;12(6):553–560. PubMed PMC
Nickens MA, Long RC, Geraci SA. Cardiovascular disease in pregnancy (Women’s Health Series) Southern Medical Journal. 2013;106(11):624–630. PubMed
Frishman WH. β-adrenergic blockade in cardiovascular disease. Journal of Cardiovascular Pharmacology and Therapeutics. 2013;18(4):310–319. PubMed
Caton AR, Bell EM, Druschel CM, et al. Antihypertensive medication use during pregnancy and the risk of cardiovascular malformations. Hypertension. 2009;54(1):63–70. PubMed PMC
Vasilakis-Scaramozza C, Aschengrau A, Cabral HJ, Jick SS. Antihypertensive drugs and the risk of congenital anomalies. Pharmacotherapy. 2013;33(5):476–482. PubMed
Yakoob MY, Bateman BT, Ho E, et al. The risk of congenital malformations associated with exposure to β-blockers early in pregnancy: a meta-analysis. Hypertension. 2013;62(2):375–381. PubMed PMC
Ruijtenbeek K, De Mey JGR, Blanco CE, Ehmke H. The chicken embryo in developmental physiology of the cardiovascular system: A traditional model with new possibilities. American Journal of Physiology: Regulatory Integrative and Comparative Physiology. 2002;283(2):R549–R551. PubMed
Kirby ML. Cardiac Development. Oxford University Press; 2007. Innervation of the developing heart; pp. 179–197.
Higgins D, Pappano AJ. A histochemical study of the ontogeny of catecholamine-containing axons in the chick embryo heart. Journal of Molecular and Cellular Cardiology. 1979;11(7):661–668. PubMed
Culver NG, Fischman DA. Pharmacological analysis of sympathetic function in the embryonic chick heart. The American Journal of Physiology. 1977;232(3):R116–R123. PubMed
Stewart DE, Kirby ML. Endogenous tyrosine hydroxylase activity in the developing chick heart: a possible source of extraneuronal catecholamines. Journal of Molecular and Cellular Cardiology. 1985;17(4):389–398. PubMed
Mulder ALM, van Golde JMCG, van Goor AAC, Giussani DA, Blanco CE. Developmental changes in plasma catecholamine concentrations during normoxia and acute hypoxia in the chick embryo. Journal of Physiology. 2000;527(3):593–599. PubMed PMC
Zamenhof S. Selective sensitive period in chick embryo: toxic effect of exogenous neurotransmitters. Cytobios. 1989;58(234-235):171–177. PubMed
Kockova R, Svatunkova J, Novotny J, Hejnova L, Ostadal B, Sedmera D. Heart rate changes mediate the embryotoxic effect of antiarrhythmic drugs in the chick embryo. American Journal of Physiology: Heart and Circulatory Physiology. 2013;304(6):H895–H902. PubMed
Vatner DE, Asai K, Iwase M, et al. Beta-adrenergic receptor-G protein-adenylyl cyclase signal transduction in the failing heart. American Journal of Cardiology. 1999;83(12):80H–85H. PubMed
Wachter SB, Gilbert EM. Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology. 2012;122(2):104–112. PubMed
Novotny J, Bouřová L, Kolář F, Svoboda P. Membrane-bound and cytosolic forms of heterotrimeric G proteins in young and adult rat myocardium: influence of neonatal hypo- and hyperthyroidism. Journal of Cellular Biochemistry. 2001;82(2):215–224. PubMed
Salomon Y, Londos C, Rodbell M. A highly sensitive adenylate cyclase assay. Analytical Biochemistry. 1974;58(2):541–548. PubMed
White AA. Separation and purification of cyclic nucleotides by alumina column chromatography. Methods in Enzymology. 1974;38:41–46. PubMed
Alexander RW, Galper JB, Neer EJ, Smith TW. Non-co-ordinate development of β-adrenergic receptors and adenylate cyclase in chick heart. Biochemical Journal. 1982;204(3):825–830. PubMed PMC
Halvorsen SW, Nathanson NM. Ontogenesis of physiological responsiveness and guanine nucleotide sensitivity of cardiac muscarinic receptors during chick embryonic development. Biochemistry. 1984;23(24):5813–5821. PubMed
Phillips MT, Kirby ML, Stewart DE. Cyclic AMP in normal and sympathetically aneural chick hearts during development. Journal of Molecular and Cellular Cardiology. 1986;18(8):827–835. PubMed
Stewart DE, Kirby ML, Aronstam RS. Regulation of β-adrenergic receptor density in the non-innervated and denervated embryonic chick heart. Journal of Molecular and Cellular Cardiology. 1986;18(5):469–475. PubMed
Brown L, Deighton NM, Bals S, et al. Spare receptors for β-adrenoceptor-mediated positive inotropic effects of catecholamines in the human heart. Journal of Cardiovascular Pharmacology. 1992;19(2):222–232. PubMed
Jackson DA, Nathanson NM. Subtype-specific regulation of muscarinic receptor expression and function by heterologous receptor activation. Journal of Biological Chemistry. 1995;270(38):22374–22377. PubMed
Dhein S, Röhnert P, Markau S, et al. Cardiac beta-adrenoceptors in chronic uremia: studies in humans and rats. Journal of the American College of Cardiology. 2000;36(2):608–617. PubMed
Alousi AA, Jasper JR, Insel PA, Motulsky HJ. Stoichiometry of receptor-GS-adenylate cyclase interactions. The FASEB Journal. 1991;5(9):2300–2303. PubMed
Slotkin TA, Auman JT, Seidler FJ. Ontogenesis of β-adrenoceptor signaling: Implications for perinatal physiology and for fetal effects of tocolytic drugs. Journal of Pharmacology and Experimental Therapeutics. 2003;306(1):1–7. PubMed
Venturini L, Sparber SB. Salicylate and cocaine: interactive toxicity during chicken mid-embryogenesis. Free Radical Biology and Medicine. 2001;30(2):198–207. PubMed
Garofolo MC, Seidler FJ, Cousins MM, Tate CA, Qiao D, Slotkin TA. Developmental toxicity of terbutaline: critical periods for sex-selective effects on macromolecules and DNA synthesis in rat brain, heart, and liver. Brain Research Bulletin. 2003;59(4):319–329. PubMed
Portbury AL, Chandra R, Groelle M, et al. Catecholamines act via a β-adrenergic receptor to maintain fetal heart rate and survival. American Journal of Physiology. Heart and Circulatory Physiology. 2003;284(6):H2069–H2077. PubMed
Drake VJ, Koprowski SL, Hu N, Smith SM, Lough J. Cardiogenic effects of trichloroethylene and trichloroacetic acid following exposure during heart specification of avian development. Toxicological Sciences. 2006;94(1):153–162. PubMed