Autophagic degradation of the inhibitory p53 isoform Δ133p53α as a regulatory mechanism for p53-mediated senescence
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem
Grantová podpora
Z01 BC005795-13
Intramural NIH HHS - United States
PubMed
25144556
PubMed Central
PMC6662595
DOI
10.1038/ncomms5706
PII: ncomms5706
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- androstadieny farmakologie MeSH
- autofagie účinky léků fyziologie MeSH
- beclin 1 MeSH
- cykloheximid farmakologie MeSH
- fibroblasty účinky léků metabolismus MeSH
- genový knockdown MeSH
- kultivované buňky MeSH
- lidé MeSH
- malá interferující RNA MeSH
- membránové proteiny genetika metabolismus MeSH
- nádorový supresorový protein p53 genetika metabolismus MeSH
- protein - isoformy metabolismus MeSH
- proteiny asociované s mikrotubuly genetika metabolismus MeSH
- proteiny regulující apoptózu genetika metabolismus MeSH
- sekvestosom 1 MeSH
- stárnutí buněk fyziologie MeSH
- ubikvitinligasy genetika metabolismus MeSH
- wortmannin MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Názvy látek
- adaptorové proteiny signální transdukční MeSH
- androstadieny MeSH
- beclin 1 MeSH
- BECN1 protein, human MeSH Prohlížeč
- cykloheximid MeSH
- malá interferující RNA MeSH
- MAP1LC3B protein, human MeSH Prohlížeč
- membránové proteiny MeSH
- nádorový supresorový protein p53 MeSH
- protein - isoformy MeSH
- proteiny asociované s mikrotubuly MeSH
- proteiny regulující apoptózu MeSH
- sekvestosom 1 MeSH
- SQSTM1 protein, human MeSH Prohlížeč
- STUB1 protein, human MeSH Prohlížeč
- TP53 protein, human MeSH Prohlížeč
- ubikvitinligasy MeSH
- wortmannin MeSH
Δ133p53α, a p53 isoform that can inhibit full-length p53, is downregulated at replicative senescence in a manner independent of mRNA regulation and proteasome-mediated degradation. Here we demonstrate that, unlike full-length p53, Δ133p53α is degraded by autophagy during replicative senescence. Pharmacological inhibition of autophagy restores Δ133p53α expression levels in replicatively senescent fibroblasts, without affecting full-length p53. The siRNA-mediated knockdown of pro-autophagic proteins (ATG5, ATG7 and Beclin-1) also restores Δ133p53α expression. The chaperone-associated E3 ubiquitin ligase STUB1, which is known to regulate autophagy, interacts with Δ133p53α and is downregulated at replicative senescence. The siRNA knockdown of STUB1 in proliferating, early-passage fibroblasts induces the autophagic degradation of Δ133p53α and thereby induces senescence. Upon replicative senescence or STUB1 knockdown, Δ133p53α is recruited to autophagosomes, consistent with its autophagic degradation. This study reveals that STUB1 is an endogenous regulator of Δ133p53α degradation and senescence, and identifies a p53 isoform-specific protein turnover mechanism that orchestrates p53-mediated senescence.
Zobrazit více v PubMed
Mizushima N Autophagy: process and function. Genes Dev. 21, 2861–2873 (2007). PubMed
White E Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer 12, 401–410 (2012). PubMed PMC
Kirkin V, McEwan DG, Novak I & Dikic I A role for ubiquitin in selective autophagy. Mol. Cell 34, 259–269 (2009). PubMed
Kraft C, Peter M & Hofmann K Selective autophagy: ubiquitin-mediated recognition and beyond. Nat. Cell Biol. 12, 836–841 (2010). PubMed
Itakura E & Mizushima N Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6, 764–776 (2010). PubMed PMC
Liang XH et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676 (1999). PubMed
Mizushima N, Yoshimori T & Levine B Methods in mammalian autophagy research. Cell 140, 313–326 (2010). PubMed PMC
Tanida I, Ueno T & Kominami E LC3 and Autophagy. Methods Mol. Biol 445, 77–88 (2008). PubMed
Johansen T & Lamark T Selective autophagy mediated by autophagic adapter proteins. Autophagy 7, 279–296 (2011). PubMed PMC
Matecic M et al. A microarray-based genetic screen for yeast chronological aging factors. PLoS Genet. 6, e1000921 (2010). PubMed PMC
Rubinsztein DC, Marino G & Kroemer G Autophagy and aging. Cell 146, 682–695 (2011). PubMed
Toth ML et al. Longevity pathways converge on autophagy genes to regulate life span in Caenorhabditis elegans. Autophagy 4, 330–338 (2008). PubMed
Bjedov I et al. Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metab. 11, 35–46 (2010). PubMed PMC
Simonsen A et al. Promoting basal levels of autophagy in the nervous system enhances longevity and oxidant resistance in adult Drosophila. Autophagy 4, 176–184 (2008). PubMed
Choi AM, Ryter SW & Levine B Autophagy in hum an health and disease. New Engl. J. Med 368, 651–662 (2013). PubMed
Kimmelman AC The dynamic nature of autophagy in cancer. Genes Dev. 25, 1999–2010 (2011). PubMed PMC
Mah LY & Ryan KM Autophagy and cancer. Cold Spring Harb. Perspect. Biol 4, a008821 (2012). PubMed PMC
Campisi J Cancer, aging and cellular senescence. In Vivo 14, 183–188 (2000). PubMed
Collado M, Blasco MA & Serrano M Cellular senescence in cancer and aging. Cell 130, 223–233 (2007). PubMed
Bassham DC et al. Autophagy in development and stress responses of plants. Autophagy 2, 2–11 (2006). PubMed
Kang HT, Lee KB, Kim SY, Choi HR & Park SC Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 6, e23367 (2011). PubMed PMC
Shay JW & Wright WE Senescence and immortalization: role of telomeres and telomerase. Carcinogenesis 26, 867–874 (2005). PubMed
Bartkova J et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633–637 (2006). PubMed
Serrano M, Lin AW, McCurrach ME, Beach D & Lowe SW Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593–602 (1997). PubMed
Nakamura AJ et al. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenetics Chromatin 1, 6 (2008). PubMed PMC
Sedelnikova OA et al. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6,168–170 (2004). PubMed
Herbig U, Jobling WA, Chen BP, Chen DJ & Sedivy JM Telomere shortening triggers senescence of hum an cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol. Cell 14, 501–513 (2004). PubMed
Bourdon JC et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 19, 2122–2137 (2005). PubMed PMC
Khoury MP & Bourdon JC p53 isoforms: an intracellular microprocessor? Genes Cancer 2, 453–465 (2011). PubMed PMC
Fujita K et al. p53 isoforms Δ133p53 and p53β are endogenous regulators of replicative cellular senescence. Nat. Cell Biol 11, 1135–1142 (2009). PubMed PMC
Picksley SM, Vojtesek B, Sparks A & Lane DP Immunochemical analysis of the interaction of p53 with MDM2;--fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene 9, 2523–2529 (1994). PubMed
Surget S, Khoury MP & Bourdon JC Uncovering the role of p53 splice variants in human malignancy: a clinical perspective. Onco. Targets Ther 7, 57–68 (2013). PubMed PMC
Lawrence BP & Brown WJ Inhibition of protein synthesis separates autophagic sequestration from the delivery of lysosomal enzymes. J. Cell Sci 105, 473–480 (1993). PubMed
Munafo DB & Colombo MI A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J. Cell Sci 114, 3619–3629 (2001). PubMed
Blommaart EF, Krause U, Schellens JP, Vreeling-Sindelarova H & Meijer AJ The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur. J. Biochem 243, 240–246 (1997). PubMed
Ding J, Vlahos CJ, Liu R, Brown RF & Badwey JA Antagonists of phosphatidylinositol 3-kinase block activation of several novel protein kinases in neutrophils. J. Biol. Chem 270, 11684–11691 (1995). PubMed
Rubinsztein DC et al. In search of an ‘autophagomometer’. Autophagy 5, 585–589 (2009). PubMed
Tavaria M, Gabriele T, Kola I & Anderson RL A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1, 23–28 (1996). PubMed PMC
Esser C, Scheffner M & Hohfeld J The chaperone-associated ubiquitin ligase CHIP is able to target p53 for proteasomal degradation. J. Biol. Chem 280, 27443–27448 (2005). PubMed
Arndt V, Daniel C, Nastainczyk W, Alberti S & Hohfeld J BAG-2 acts as an inhibitor of the chaperone-associated ubiquitin ligase CHIP. Mol. Biol. Cell 16, 5891–5900 (2005). PubMed PMC
Kabbage M & Dickman MB The BAG proteins: a ubiquitous family of chaperone regulators. Cell Mol. Life Sci 65, 1390–1402 (2008). PubMed PMC
McDonough H & Patterson C CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003). PubMed PMC
Hainaut P & Milner J Interaction of heat-shock protein 70 with p53 translated in vitro: evidence for interaction with dimeric p53 and for a role in the regulation of p53 conformation. EMBO J. 11, 3513–3520 (1992). PubMed PMC
Meek DW & Anderson CW Posttranslational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol 1, a000950 (2009). PubMed PMC
Coppe JP, Desprez PY, Krtolica A & Campisi J The senescence-associated secretory phenotype: the dark side of tum or suppression. Annu. Rev. Pathol 5, 99–118 (2010). PubMed PMC
Camus S et al. The p53 isoforms are differentially modified by Mdm2. Cell Cycle 11, 1646–1655 (2012). PubMed PMC
Shin Y, Klucken J, Patterson C, Hyman BT & McLean PJ The co-chaperone carboxyl terminus of Hsp70-interacting protein (CHIP) mediates alpha-synuclein degradation decisions between proteasomal and lysosomal pathways. J. Biol. Chem 280, 23727–23734 (2005). PubMed
Li W, Yang Q & Mao Z Chaperone-mediated autophagy: machinery, regulation and biological consequences. Cell Mol. Life Sci. 68, 749–763 (2011). PubMed PMC
Vicencio JM et al. Senescence, apoptosis or autophagy? When a damaged cell must decide its path--a mini-review. Gerontology 54, 92–99 (2008). PubMed
Jaeger PA & Wyss-Coray T All-you-can-eat: autophagy in neurodegeneration and neuroprotection. Mol. Neurodegener 4, 16 (2009). PubMed PMC
Finn PF, Mesires NT, Vine M & Dice JF Effects of small molecules on chaperone-mediated autophagy. Autophagy 1, 141–145 (2005). PubMed
Kettern N, Dreiseidler M, Tawo R & Hohfeld J Chaperone-assisted degradation: multiple paths to destruction. Biol. Chem 391, 481–489 (2010). PubMed
Vakifahmetoglu-Norberg H et al. Chaperone-mediated autophagy degrades mutant p53. Genes Dev. 27, 1718–1730 (2013). PubMed PMC
Rodriguez OC et al. Dietary downregulation of mutant p53 levels via glucose restriction: mechanisms and implications for tum or therapy. Cell Cycle 11, 4436–4446 (2012). PubMed PMC
Tsvetkov P, Adamovich Y, Elliott E & Shaul Y E3 ligase STUB1/CHIP regulates NAD(P)H:quinone oxidoreductase 1 (NQO1) accumulation in aged brain, a process impaired in certain Alzheimer disease patients. J. Biol. Chem 286, 8839–8845 (2011). PubMed PMC
Min JN et al. CHIP deficiency decreases longevity, with accelerated aging phenotypes accompanied by altered protein quality control. Mol. Cell Biol. 28, 4018–4025 (2008). PubMed PMC
Johnson JE, Cao K, Ryvkin P, Wang LS & Johnson FB Altered gene expression in the Werner and Bloom syndromes is associated with sequences having G-quadruplex forming potential. Nucleic Acids Res. 38, 1114–1122 (2010). PubMed PMC
Kelemen O et al. Function of alternative splicing. Gene 514, 1–30 (2013). PubMed PMC
Yang Q et al. Functional diversity of human protection of telomeres 1 isoforms in telomere protection and cellular senescence. Cancer Res. 67, 11677–11686 (2007). PubMed
Fujita K et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat. Cell Biol 12, 1205–1212 (2010). PubMed PMC
Tang Y et al. Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 32, 2792–2798 (2013). PubMed PMC
Levine B, Mizushima N & Virgin HW Autophagy in immunity and inflammation. Nature 469, 323–335 (2011). PubMed PMC
Mathew R et al. Autophagy suppresses tumorigenesis through elimination of p62. Cell 137, 1062–1075 (2009). PubMed PMC
Mondal AM et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J. Clin. Invest 123, 5247–5257 (2013). PubMed PMC
Jeram SM, Srikumar T, Pedrioli PG & Raught B Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 9, 922–934 (2009). PubMed
p53 isoforms regulate premature aging in human cells
p53 isoforms regulate astrocyte-mediated neuroprotection and neurodegeneration