Combining rational and random strategies in β-glucosidase Zm-p60.1 protein library construction
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25260034
PubMed Central
PMC4178128
DOI
10.1371/journal.pone.0108292
PII: PONE-D-14-24314
Knihovny.cz E-zdroje
- MeSH
- aktivace enzymů MeSH
- beta-glukosidasa genetika metabolismus MeSH
- databáze proteinů MeSH
- genová knihovna MeSH
- hydrolýza MeSH
- kodon MeSH
- kukuřice setá genetika metabolismus MeSH
- mutageneze MeSH
- proteinové inženýrství * metody MeSH
- rostlinné proteiny genetika metabolismus MeSH
- substrátová specifita MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- beta-glukosidasa MeSH
- kodon MeSH
- rostlinné proteiny MeSH
Saturation mutagenesis is a cornerstone technique in protein engineering because of its utility (in conjunction with appropriate analytical techniques) for assessing effects of varying residues at selected positions on proteins' structures and functions. Site-directed mutagenesis with degenerate primers is the simplest and most rapid saturation mutagenesis technique. Thus, it is highly appropriate for assessing whether or not variation at certain sites is permissible, but not necessarily the most time- and cost-effective technique for detailed assessment of variations' effects. Thus, in the presented study we applied the technique to randomize position W373 in β-glucosidase Zm-p60.1, which is highly conserved among β-glucosidases. Unexpectedly, β-glucosidase activity screening of the generated variants showed that most variants were active, although they generally had significantly lower activity than the wild type enzyme. Further characterization of the library led us to conclude that a carefully selected combination of randomized codon-based saturation mutagenesis and site-directed mutagenesis may be most efficient, particularly when constructing and investigating randomized libraries with high fractions of positive hits.
Zobrazit více v PubMed
Patrick WM, Firth AE, Blackburn JM (2003) User-friendly algorithms for estimating completeness and diversity in randomized protein-encoding libraries. Protein Eng 16: 451–457. PubMed
Mazura P, Filipi T, Souček P, Brzobohatý B (2011) Focused directed evolution of β-glucosidases: theoretical versus real effectiveness of a minimal working setup and simple robust screening. Carbohydr Res 346: 238–242. PubMed
Brzobohaty B, Moore I, Kristoffersen P, Bako L, Campos N, et al. (1993) Release of active cytokinin by a beta-glucosidase localized to the maize root meristem. Science (80−) 262: 1051–1054. PubMed
Kiran NS, Polanská L, Fohlerová R, Mazura P, Válková M, et al. (2006) Ectopic over-expression of the maize beta-glucosidase Zm-p60.1 perturbs cytokinin homeostasis in transgenic tobacco. J Exp Bot 57: 985–996. PubMed
Zouhar J, Ve J, Su X (2001) Insights into the functional architecture of the catalytic center of a maize Beta-glucosidase Zm-p60.1 Plant Physiol. 127: 973–985. PubMed PMC
Verdoucq L, Czjzek M, Moriniere J, Bevan DR, Esen A (2003) Mutational and structural analysis of aglycone specificity in maize and sorghum beta-glucosidases. J Biol Chem 278: 25055–25062. PubMed
Dopitová R, Mazura P, Janda L, Chaloupková R, Jerábek P, et al. (2008) Functional analysis of the aglycone-binding site of the maize beta-glucosidase Zm-p60.1. FEBS J 275: 6123–6135. PubMed
Filipi T, Mazura P, Janda L, Kiran NS, Brzobohatý B (2012) Engineering the cytokinin-glucoside specificity of the maize β-D-glucosidase Zm-p60.1 using site-directed random mutagenesis. Phytochemistry 74: 40–48. PubMed
Czjzek M, Cicek M, Zamboni V, Bevan DR, Henrissat B, et al. (2000) The mechanism of substrate (aglycone) specificity in beta -glucosidases is revealed by crystal structures of mutant maize beta -glucosidase-DIMBOA, -DIMBOAGlc, and -dhurrin complexes. Proc Natl Acad Sci U S A 97: 13555–13560. PubMed PMC
Verdoucq L, Morinière J, Bevan DR, Esen A, Vasella A, et al. (2004) Structural determinants of substrate specificity in family 1 beta-glucosidases: novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate. J Biol Chem 279: 31796–31803. PubMed
Tribolo S, Berrin J-G, Kroon P a, Czjzek M, Juge N (2007) The crystal structure of human cytosolic β-glucosidase unravels the substrate aglycone specificity of a Family 1 glycoside hydrolase. J Mol Biol 370: 964–975. PubMed
Falk A, Rask L (1995) Expression of a zeatin-O-glucoside-degrading beta-glucosidase in Brassica napus . Plant Physiol 108: 1369–1377. PubMed PMC
Zhao L, Liu T, An X, Gu R (2012) Evolution and expression analysis of the β-glucosidase (GLU) encoding gene subfamily in maize. Genes Genomics 34: 179–187.
Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9: 1797–1804. PubMed
Tang L, Gao H, Zhu X, Wang X, Zhou M, et al. (2012) Construction of “small-intelligent” focused mutagenesis libraries using well-designed combinatorial degenerate primers. Biotechniques 52: 149–158. PubMed
Saino H, Shimizu T, Hiratake J, Nakatsu T, Kato H, et al. (2014) Crystal structures of β-primeverosidase in complex with disaccharide amidine inhibitors. J Biol Chem 289: 16826–16834. PubMed PMC
Henrissat B, Daviest G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7: 637–644. PubMed
Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302: 205–217. PubMed
Madan R, Kolter R, Mahadevan S (2005) Mutations that activate the silent bgl operon of Escherichia coli confer a growth advantage in stationary phase. J Bacteriol 187: 7912–7917. PubMed PMC