Detection of OXA-48-type carbapenemase-producing Enterobacteriaceae in diagnostic laboratories can be enhanced by addition of bicarbonates to cultivation media or reaction buffers

. 2015 Mar ; 60 (2) : 119-29. [epub] 20140929

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu hodnotící studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25261959

Carbapenemase-mediated resistance to carbapenems in Enterobacteriaceae has become the main challenge in the treatment and prevention of infections recently. The partially unnoticed spread of OXA-48-type carbapenemase producers is usually assigned to low minimum inhibitory concentrations (MICs) of carbapenems that OXA-48-producing isolates often display. Therefore, there is an urgent need of specific and sensitive methods for isolation and detection of OXA-48 producers in clinical microbiology diagnostics. The influence of bicarbonates on carbapenem MICs against carbapenemase-producing Enterobacteriaceae was tested. We also checked whether the addition of bicarbonates to liquid media supplemented with meropenem may facilitate the selective enrichment of various carbapenemase producers in cultures. Furthermore, the sensitivity of carbapenemase confirmation by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) and spectrophotometric hydrolysis assays upon the addition of NH4HCO3 was examined. The addition of NaHCO3 significantly increased MICs of ertapenem and meropenem for OXA-48 producers. Furthermore, liquid media supplemented with NaHCO3 and meropenem were reliable for the selective enrichment of carbapenemase producers. The presence of NH4HCO3 in buffers used in the spectrophotometric and MALDI-TOF MS carbapenemase detection increased the sensitivity of that assay. Our results demonstrate that bicarbonates in media or reaction buffers can enhance the sensitivity of screening methods and diagnostic tests for carbapenemase producers.

Zobrazit více v PubMed

Almarsson O, Kaufman MJ, Stong JD, Wu Y, Mayr SM, Petrich MA, Williams JM. Meropenem exists in equilibrium with a carbon dioxide adduct in bicarbonate solution. J Pharm Sci. 1998;87:663–666. doi: 10.1021/js970370u. PubMed DOI

Antunes NT, Lamoureaux TL, Toth M, Stewart NK, Frase H, Vakulenko SB. Class D β-lactamases: are they all carbapenemases? Antimicrob Agents Chemother. 2014;58:2119–2125. doi: 10.1128/AAC.02522-13. PubMed DOI PMC

Barrett KE, Barman SM, Boitano S, Brooks H. Ganong’s review of medical physiology. 23. NY: McGraw-Hill Medical; 2009.

Burtis CA. Tietz, textbook of clinical chemistry and molecular diagnostics. 4. Elsevier, St. Louis, MO: Carl A. Burtis et al; 2006.

Bush K, Jacoby GA, Medeiros AA. A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 1995;39:1211–1233. doi: 10.1128/AAC.39.6.1211. PubMed DOI PMC

Chudackova E, Bergerova T, Fajfrlik K, Cervena D, Urbaskova P, Empel J, Gniadkowski M, Hrabak J. Carbapenem-non-susceptible strains of Klebsiella pneumoniae producing SHV-5 and/or DHA-1 β-lactamases in a Czech hospital. FEMS Microbiol Lett. 2010;309:62–70. PubMed

Che T, Bethel CR, Pusztai-Carey M, Bonomo RA, Carey PR. The different inhibition mechanisms of OXA-1 and OXA-24 β-lactamases are determined by the stability of active site carboxylated lysine. J Biol Chem. 2014;289:6152–6164. doi: 10.1074/jbc.M113.533562. PubMed DOI PMC

Docquier JD, Calderone V, De Luca F, Benvenuti M, Giuliani F, Bellucci L, Tafi A, Nordmann P, Botta M, Rossolini GM, Mangani S. Crystal structure of the OXA-48 beta-lactamase reveals mechanistic diversity among class D carbapenemases. Chem Biol. 2009;16:540–547. doi: 10.1016/j.chembiol.2009.04.010. PubMed DOI

Empel J, Hrabak J, Kozinska A, Bergerova T, Urbaskova P, Kern-Zdanowicz I, Gniadkowski M. DHA-1-producing Klebsiella pneumoniae in a teaching hospital in the Czech Republic. Microbiol Drug Res. 2010;16:291–295. doi: 10.1089/mdr.2010.0030. PubMed DOI

European Committee on Antimicrobial Susceptibility Testing Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect. 2003;9:1–7. doi: 10.1046/j.1469-0691.2003.00564.x. PubMed DOI

European Committee on Antimicrobial Susceptibility Testing (2013a) Breakpoint tables for interpretation of MICs and zone diameters, version 3.1. http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/Breakpoint_table_v_3.1.pdf. Accessed 15 September 2013

Fournet-Fayard S, Joly B, Forestier C. Transformation of wild type Klebsiella pneumoniae with plasmid DNA by electroporation. J Microbiol Methods. 1995;24:49–54. doi: 10.1016/0167-7012(95)00053-4. DOI

Glasner C, Albiger B, Buist G, Tambić Andrasević A, Canton R, Carmeli Y, Friedrich A, Giske C, Glupczynski Y, Gniadkowski M, Livermore D, Nordmann P, Poirel L, Rossolini G, Seifert H, Vatopoulos A, Walsh T, Woodford N, Donker T, Monnet D, Grundmann H; European Survey on Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) working group (2013) Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill 18:pii = 20525 PubMed

Hrabák J, Chudackova E, Walkova R. Matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry for detection of antibiotic resistance mechanisms: from research to routine diagnosis. Clin Microbiol Rev. 2013;26:103–114. doi: 10.1128/CMR.00058-12. PubMed DOI PMC

Hrabak J, Empel J, Bergerova T, Fajfrlik K, Urbaskova P, Kern-Zdanowicz I, Hryniewicz W, Gniadkowski M. International clones of Klebsiella pneumoniae and Escherichia coli with extended-spectrum β-lactamases (ESBLs) in a Czech hospital. J Clin Microbiol. 2009;47:3353–3357. doi: 10.1128/JCM.00901-09. PubMed DOI PMC

Hrabak J, Niemczyková J, Chudackova E, Fridrichova M, Studentova V, Cervena D, Urbaskova P, Zemlickova H. KPC-2-producing Klebsiella pneumoniae isolated from a Czech patient previously hospitalized in Greece and in vivo selection of colistin resistance. Folia Microbiol. 2011;56:361–365. doi: 10.1007/s12223-011-0057-6. PubMed DOI

Hrabák J, Papagiannitsis CC, Chudáčková E (2014) Detection of carbapenemases in Enterobacteriaceae: a challenge for diagnostic microbiological laboratories. Clin Microb Infect: in press. DOI: 10.1111/1469-0691.12678 PubMed

Hrabak J, Papagiannitsis CC, Studentova V, Jakubu V, Fridrichova M, Zemlickova H and Czech Participants of European Antimicrobial Resistance Surveillance Network (2013) First outbreaks of carbapenemase-producing Klebsiella pneumoniae in the Czech Republic in 2011. Euro Surveill 18:pii = 20626 PubMed

Hrabak J, Studentova V, Walkova R, Zemlickova H, Jakubu V, Chudackova E, Gniadkowski M, Pfeifer Y, Perry JD, Wilkinson K, Bergerova T. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by MALDI-TOF mass spectrometry. J Clin Microbiol. 2012;50:2441–2443. doi: 10.1128/JCM.01002-12. PubMed DOI PMC

June CM, Vallier BC, Bonomo RA, Leonard DA, Powersa RA. Structural origins of oxacillinase specificity in class D β-lactamases. Antimicrob Agents Chemother. 2014;58:333–341. doi: 10.1128/AAC.01483-13. PubMed DOI PMC

Laraki N, Franceschini N, Rossolini GM, Santucci P, Meunier C, de Pauw E, Amicosante G, Frère JM, Galleni M. Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrob Agents Chemother. 1999;43:902–906. PubMed PMC

Leonard DA, Hujer AM, Smith BA, Schneider KD, Bethel CR, Hujer KM, Bonomo RA. The role of OXA-1 beta-lactamase Asp (66) in the stabilization of the active-site carbamate group and in substrate turnover. Biochem J. 2008;410:455–462. doi: 10.1042/BJ20070573. PubMed DOI

Livermore DM, Andrews JM, Hawkey PM, Ho PL, Keness Y, Doi Y, Paterson D, Woodford N. Are susceptibility tests enough, or should laboratories still seek ESBLs and carbapenemases directly? J Antimicrob Chemother. 2012;67:1569–1577. doi: 10.1093/jac/dks088. PubMed DOI

Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis. 2013;13:785–796. doi: 10.1016/S1473-3099(13)70190-7. PubMed DOI PMC

Nordmann P, Poirel L (2013) Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother 68:487–489 PubMed

Papagiannitsis CC, Studentova V, Chudackova E, Bergerova T, Hrabak J, Radej J, Novak I. Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol. 2013;58:547–549. doi: 10.1007/s12223-013-0247-5. PubMed DOI

Pfeifer Y, Schlatterer K, Engelmann E, Schiller RA, Frangenberg HR, Stiewe D, Holfelder M, Witte W, Nordmann P, Poirel L. Emergence of OXA-48-type carbapenemase-producing Enterobacteriaceae in German hospitals. Antimicrob Agent Chemother. 2012;56:2125–2128. doi: 10.1128/AAC.05315-11. PubMed DOI PMC

Poirel L, Héritier C, Tolün V, Nordmann P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob Agents Chemother. 2004;48:15–22. doi: 10.1128/AAC.48.1.15-22.2004. PubMed DOI PMC

Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67:1597–1606. doi: 10.1093/jac/dks121. PubMed DOI

Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M. MALDI-TOF MS based functional assay for the rapid detection of resistance against β-lactam antibiotics. J Clin Microbiol. 2012;50:927–937. doi: 10.1128/JCM.05737-11. PubMed DOI PMC

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev. 2012;25:682–707. doi: 10.1128/CMR.05035-11. PubMed DOI PMC

Vercheval L, Bauvois C, di Paolo A, Borel F, Ferrer JL, Sauvage E, Matagne A, Frère JM, Charlier P, Galleni M, Kerff F. Three factors that modulate the activity of class D β-lactamases and interfere with the post-translational carboxylation of Lys70. Biochem J. 2010;432:495–504. doi: 10.1042/BJ20101122. PubMed DOI

Verma V, Testero SA, Amini K, Wei W, Liu J, Balachandran N, Monoharan T, Stynes S, Kotra LP, Golemi-Kotra D. Hydrolytic mechanism of OXA-58 enzyme, a carbapenem-hydrolyzing class D β-lactamase from Acinetobacter baumannii. J Biol Chem. 2011;286:37292–37303. doi: 10.1074/jbc.M111.280115. PubMed DOI PMC

Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. Efficacity of humanized carbapenem and ceftazidime regimens against Enterobacteriaceae producing OXA-48 carbapenemase in a murine infection model. Antimicrob Agents Chemother. 2014;58:1678–1683. doi: 10.1128/AAC.01947-13. PubMed DOI PMC

Wiskirchen DE, Nordmann P, Crandon JL, Nicolau DP. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1 producing Enterobacteriaceae. Antimicrob Agents Chemother. 2014;58:1671–1677. doi: 10.1128/AAC.01946-13. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace