• This record comes from PubMed

Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate

. 2014 Nov 21 ; 289 (47) : 32488-98. [epub] 20141002

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.

Grant support
R01 ES020693 NIEHS NIH HHS - United States
R01 OH008282 NIOSH CDC HHS - United States
U19 AI068021 NIAID NIH HHS - United States
ES 021068 NIEHS NIH HHS - United States
OH008282 NIOSH CDC HHS - United States
P01 HL114453 NHLBI NIH HHS - United States
R21 ES021068 NIEHS NIH HHS - United States
ES 020693 NIEHS NIH HHS - United States
HL114453 NHLBI NIH HHS - United States

Links

PubMed 25278024
PubMed Central PMC4239604
DOI 10.1074/jbc.m114.601377
PII: S0021-9258(20)47455-1
Knihovny.cz E-resources

Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met(80)) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c(+/+) cells than in cytochrome c(-/-) cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.

See more in PubMed

Evans H. M., Bishop K. S. (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56, 650–651 PubMed

Tappel A. L. (1970) Biological antioxidant protection against lipid peroxidation damage. Am. J. Clin. Nutr. 23, 1137–1139 PubMed

Packer L. (1991) Protective role of vitamin E in biological systems. Am. J. Clin. Nutr. 53, 1050S–1055S PubMed

Niki E., Traber M. G. (2012) A history of vitamin E. Ann. Nutr. Metab. 61, 207–212 PubMed

Myung S. K., Ju W., Cho B., Oh S. W., Park S. M., Koo B. K., Park B. J., Korean Meta-Analysis Study G. (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346, f10. PubMed PMC

Dolara P., Bigagli E., Collins A. (2012) Antioxidant vitamins and mineral supplementation, life span expansion and cancer incidence: a critical commentary. Eur. J. Nutr. 51, 769–781 PubMed

Abner E. L., Schmitt F. A., Mendiondo M. S., Marcum J. L., Kryscio R. J. (2011) Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci 4, 158–170 PubMed PMC

Ricciarelli R., Zingg J. M., Azzi A. (2001) Vitamin E: protective role of a Janus molecule. FASEB J. 15, 2314–2325 PubMed

Kagan V. E. (1989) Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. Ann. N.Y. Acad. Sci. 570, 121–135 PubMed

Galli F., Azzi A. (2010) Present trends in vitamin E research. BioFactors 36, 33–42 PubMed

Neuzil J., Weber T., Gellert N., Weber C. (2001) Selective cancer cell killing by α-tocopheryl succinate. Br. J. Cancer 84, 87–89 PubMed PMC

Rohlena J., Dong L. F., Ralph S. J., Neuzil J. (2011) Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid. Redox Signal. 15, 2951–2974 PubMed

Negis Y., Zingg J. M., Libinaki R., Meydani M., Azzi A. (2009) Vitamin E and cancer. Nutr. Cancer 61, 875–878 PubMed

Azzi A. (2007) Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 43, 16–21 PubMed

Kogure K., Manabe S., Hama S., Tokumura A., Fukuzawa K. (2003) Potentiation of anti-cancer effect by intravenous administration of vesiculated α-tocopheryl hemisuccinate on mouse melanoma in vivo. Cancer Lett. 192, 19–24 PubMed

Ralph S. J., Moreno-Sánchez R., Neuzil J., Rodríguez-Enríquez S. (2011) Inhibitors of succinate: quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm. Res. 28, 2695–2730 PubMed

Dong L. F., Jameson V. J., Tilly D., Cerny J., Mahdavian E., Marín-Hernández A., Hernández-Esquivel L., Rodríguez-Enríquez S., Stursa J., Witting P. K., Stantic B., Rohlena J., Truksa J., Kluckova K., Dyason J. C., Ledvina M., Salvatore B. A., Moreno-Sánchez R., Coster M. J., Ralph S. J., Smith R. A., Neuzil J. (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728 PubMed PMC

Kagan V. E., Tyurin V. A., Jiang J., Tyurina Y. Y., Ritov V. B., Amoscato A. A., Osipov A. N., Belikova N. A., Kapralov A. A., Kini V., Vlasova I. I., Zhao Q., Zou M., Di P., Svistunenko D. A., Kurnikov I. V., Borisenko G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 PubMed

Paradies G., Petrosillo G., Paradies V., Ruggiero F. M. (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45, 643–650 PubMed

Kagan V. E., Bayir H. A., Belikova N. A., Kapralov O., Tyurina Y. Y., Tyurin V. A., Jiang J., Stoyanovsky D. A., Wipf P., Kochanek P. M., Greenberger J. S., Pitt B., Shvedova A. A., Borisenko G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med. 46, 1439–1453 PubMed PMC

Kapralov A. A., Kurnikov I. V., Vlasova I. I., Belikova N. A., Tyurin V. A., Basova L. V., Zhao Q., Tyurina Y. Y., Jiang J., Bayir H., Vladimirov Y. A., Kagan V. E. (2007) The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells. Biochemistry 46, 14232–14244 PubMed

Rumbley J. N., Hoang L., Englander S. W. (2002) Recombinant equine cytochrome c in Escherichia coli: high-level expression, characterization, and folding and assembly mutants. Biochemistry 41, 13894–13901 PubMed

Liu W., Rumbley J., Englander S. W., Wand A. J. (2003) Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Protein Sci. 12, 2104–2108 PubMed PMC

Krishna M. M., Maity H., Rumbley J. N., Lin Y., Englander S. W. (2006) Order of steps in the cytochrome c folding pathway: evidence for a sequential stabilization mechanism. J. Mol. Biol. 359, 1410–1419 PubMed

Maity H., Rumbley J. N., Englander S. W. (2006) Functional role of a protein foldon: an ω-loop foldon controls the alkaline transition in ferricytochrome c. Proteins 63, 349–355 PubMed

Krishna M. M., Maity H., Rumbley J. N., Englander S. W. (2007) Branching in the sequential folding pathway of cytochrome c. Protein Sci. 16, 1946–1956 PubMed PMC

Pallotti F., Lenaz G. (2007) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 80, 3–44 PubMed

Johnson B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313–352 PubMed

Goddard T., Kneller D. (2008) SPARKY 3, University of California, San Francisco, CA

Trott O., Olson A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 31, 455–461 PubMed PMC

Sinibaldi F., Fiorucci L., Patriarca A., Lauceri R., Ferri T., Coletta M., Santucci R. (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry 47, 6928–6935 PubMed

Droghetti E., Oellerich S., Hildebrandt P., Smulevich G. (2006) Heme coordination states of unfolded ferrous cytochrome c. Biophys. J. 91, 3022–3031 PubMed PMC

Maity H., Maity M., Krishna M. M., Mayne L., Englander S. W. (2005) Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. U.S.A. 102, 4741–4746 PubMed PMC

Battistuzzi G., Bortolotti C. A., Bellei M., Di Rocco G., Salewski J., Hildebrandt P., Sola M. (2012) Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c. Biochemistry 51, 5967–5978 PubMed

Oellerich S., Wackerbarth H., Hildebrandt P. (2002) Spectroscopic characterization of nonnative conformational states of cytochrome c. J. Phys. Chem. B 106, 6566–6580

Marques H. M. (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans. 39, 4371–4385 PubMed

Munro O. Q., Marques H. M. (1996) Heme-peptide models for hemoproteins: 1. solution chemistry of N-acetylmicroperoxidase-8. Inorg. Chem. 35, 3752–3767 PubMed

Antonini E., Brunori M. (1971) The derivatives of ferric hemoglobin and myoglobin. in Hemoglobin and Myoglobin in Their Reactions with Ligands, pp. 40–54, North Holland, Amsterdam

Carraway A. D., McCollum M. G., Peterson J. (1996) Characterization of N-acetylated heme undecapeptide and some of its derivatives in aqueous media: monomeric model systems for hemoproteins. Inorg. Chem. 35, 6885–6891 PubMed

Rytömaa M., Kinnunen P. K. (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 269, 1770–1774 PubMed

Rytömaa M., Kinnunen P. K. (1995) Reversibility of the binding of cytochrome c to liposomes: implications for lipid-protein interactions. J. Biol. Chem. 270, 3197–3202 PubMed

Kawai C., Prado F. M., Nunes G. L., Di Mascio P., Carmona-Ribeiro A. M., Nantes I. L. (2005) pH-dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J. Biol. Chem. 280, 34709–34717 PubMed

Belikova N. A., Tyurina Y. Y., Borisenko G., Tyurin V., Samhan Arias A. K., Yanamala N., Furtmüller P. G., Klein-Seetharaman J., Obinger C., Kagan V. E. (2009) Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J. Am. Chem. Soc. 131, 11288–11289 PubMed

Biswas S., Dodwadkar N. S., Deshpande P. P., Torchilin V. P. (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control Release 159, 393–402 PubMed PMC

Elmore S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 PubMed PMC

Riedl S. J., Salvesen G. S. (2007) The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 405–413 PubMed

Liu J., Epand R. F., Durrant D., Grossman D., Chi N. W., Epand R. M., Lee R. M. (2008) Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-α-induced apoptosis. Biochemistry 47, 4518–4529 PubMed

Lacombe M. L., Tokarska-Schlattner M., Epand R. F., Boissan M., Epand R. M., Schlattner U. (2009) Interaction of NDPK-D with cardiolipin-containing membranes: structural basis and implications for mitochondrial physiology. Biochimie 91, 779–783 PubMed

Ji J., Kline A. E., Amoscato A., Samhan-Arias A. K., Sparvero L. J., Tyurin V. A., Tyurina Y. Y., Fink B., Manole M. D., Puccio A. M., Okonkwo D. O., Cheng J. P., Alexander H., Clark R. S., Kochanek P. M., Wipf P., Kagan V. E., Bayir H. (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15, 1407–1413 PubMed PMC

Samhan-Arias A. K., Ji J., Demidova O. M., Sparvero L. J., Feng W., Tyurin V., Tyurina Y. Y., Epperly M. W., Shvedova A. A., Greenberger J. S., Bayir H., Kagan V. E., Amoscato A. A. (2012) Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim. Biophys. Acta 1818, 2413–2423 PubMed PMC

Tyurina Y. Y., Poloyac S. M., Tyurin V. A., Kapralov A. A., Jiang J., Anthonymuthu T. S., Kapralova V. I., Vikulina A. S., Jung M. Y., Epperly M. W., Mohammadyani D., Klein-Seetharaman J., Jackson T. C., Kochanek P. M., Pitt B. R., Greenberger J. S., Vladimirov Y. A., Bayir H., Kagan V. E. (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 6, 542–552 PubMed PMC

Belikova N. A., Vladimirov Y. A., Osipov A. N., Kapralov A. A., Tyurin V. A., Potapovich M. V., Basova L. V., Peterson J., Kurnikov I. V., Kagan V. E. (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45, 4998–5009 PubMed PMC

Prasad S., Maiti N. C., Mazumdar S., Mitra S. (2002) Reaction of hydrogen peroxide and peroxidase activity in carboxymethylated cytochrome c: spectroscopic and kinetic studies. Biochim. Biophys. Acta 1596, 63–75 PubMed

de Jongh H. H., Ritsema T., Killian J. A. (1995) Lipid specificity for membrane mediated partial unfolding of cytochrome c. FEBS Lett. 360, 255–260 PubMed

Chattopadhyay K., Mazumdar S. (2003) Stabilization of partially folded states of cytochrome c in aqueous surfactant: effects of ionic and hydrophobic interactions. Biochemistry 42, 14606–14613 PubMed

Sanghera N., Pinheiro T. J. (2000) Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles. Protein Sci. 9, 1194–1202 PubMed PMC

Dong L. F., Low P., Dyason J. C., Wang X. F., Prochazka L., Witting P. K., Freeman R., Swettenham E., Valis K., Liu J., Zobalova R., Turanek J., Spitz D. R., Domann F. E., Scheffler I. E., Ralph S. J., Neuzil J. (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 PubMed PMC

Shiau C. W., Huang J. W., Wang D. S., Weng J. R., Yang C. C., Lin C. H., Li C., Chen C. S. (2006) α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J. Biol. Chem. 281, 11819–11825 PubMed

Borisenko G. G., Martin I., Zhao Q., Amoscato A. A., Tyurina Y. Y., Kagan V. E., (2004) Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells: evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity. J. Biol. Chem. 279, 23453–23462 PubMed

Davies M. J. (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 48, 8–19 PubMed PMC

Rezk B. M., van der Vijgh W. J., Bast A., Haenen G. R. (2007) α-Tocopheryl phosphate is a novel apoptotic agent. Front. Biosci. 12, 2013–2019 PubMed

Nishio K., Ishida N., Saito Y., Ogawa-Akazawa Y., Shichiri M., Yoshida Y., Hagihara Y., Noguchi N., Chirico J., Atkinson J., Niki E. (2011) α-Tocopheryl phosphate: uptake, hydrolysis, and antioxidant action in cultured cells and mouse. Free Radic. Biol. Med. 50, 1794–1800 PubMed

Munteanu A., Zingg J. M., Ogru E., Libinaki R., Gianello R., West S., Negis Y., Azzi A. (2004) Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: relevance to atherosclerosis and inflammation. Biochem. Biophys. Res. Commun. 318, 311–316 PubMed

Gianello R., Hall W. C., Kennepohl E., Libinaki R., Ogru E. (2007) Subchronic oral toxicity study of mixed tocopheryl phosphates in rats. Int. J. Toxicol. 26, 475–490 PubMed

Neuzil J., Tomasetti M., Zhao Y., Dong L. F., Birringer M., Wang X. F., Low P., Wu K., Salvatore B. A., Ralph S. J. (2007) Vitamin E analogues, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Mol. Pharmacol. 71, 1185–1199 PubMed

Rodríguez-Enríquez S., Hernández-Esquivel L., Marín-Hernández A., Dong L. F., Akporiaye E. T., Neuzil J., Ralph S. J., Moreno-Sánchez R. (2012) Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochim. Biophys. Acta 1817, 1597–1607 PubMed

Liewald F., Demmel N., Wirsching R., Kahle H., Valet G. (1990) Intracellular pH, esterase activity, and DNA measurements of human lung carcinomas by flow cytometry. Cytometry 11, 341–348 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...