Structural re-arrangement and peroxidase activation of cytochrome c by anionic analogues of vitamin E, tocopherol succinate and tocopherol phosphate
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S.
Grant support
R01 ES020693
NIEHS NIH HHS - United States
R01 OH008282
NIOSH CDC HHS - United States
U19 AI068021
NIAID NIH HHS - United States
ES 021068
NIEHS NIH HHS - United States
OH008282
NIOSH CDC HHS - United States
P01 HL114453
NHLBI NIH HHS - United States
R21 ES021068
NIEHS NIH HHS - United States
ES 020693
NIEHS NIH HHS - United States
HL114453
NHLBI NIH HHS - United States
PubMed
25278024
PubMed Central
PMC4239604
DOI
10.1074/jbc.m114.601377
PII: S0021-9258(20)47455-1
Knihovny.cz E-resources
- Keywords
- Cancer Therapy, Computer Modeling, Cytochrome c, Peroxidase, Protein Folding, Vitamin E,
- MeSH
- Enzyme Activation drug effects MeSH
- alpha-Tocopherol analogs & derivatives chemistry pharmacology MeSH
- Apoptosis drug effects genetics MeSH
- Cell Line MeSH
- Cytochromes c chemistry genetics metabolism MeSH
- Hydrophobic and Hydrophilic Interactions MeSH
- Horses MeSH
- Magnetic Resonance Spectroscopy MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Mice, Knockout MeSH
- Peroxidase chemistry metabolism MeSH
- Spectrophotometry MeSH
- Protein Structure, Tertiary MeSH
- Protein Binding MeSH
- Binding Sites genetics MeSH
- Vitamins chemistry metabolism pharmacology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Names of Substances
- alpha-Tocopherol MeSH
- alpha-tocopherol phosphate MeSH Browser
- Cytochromes c MeSH
- Peroxidase MeSH
- Vitamins MeSH
Cytochrome c is a multifunctional hemoprotein in the mitochondrial intermembrane space whereby its participation in electron shuttling between respiratory complexes III and IV is alternative to its role in apoptosis as a peroxidase activated by interaction with cardiolipin (CL), and resulting in selective CL peroxidation. The switch from electron transfer to peroxidase function requires partial unfolding of the protein upon binding of CL, whose specific features combine negative charges of the two phosphate groups with four hydrophobic fatty acid residues. Assuming that other endogenous small molecule ligands with a hydrophobic chain and a negatively charged functionality may activate cytochrome c into a peroxidase, we investigated two hydrophobic anionic analogues of vitamin E, α-tocopherol succinate (α-TOS) and α-tocopherol phosphate (α-TOP), as potential inducers of peroxidase activity of cytochrome c. NMR studies and computational modeling indicate that they interact with cytochrome c at similar sites previously proposed for CL. Absorption spectroscopy showed that both analogues effectively disrupt the Fe-S(Met(80)) bond associated with unfolding of cytochrome c. We found that α-TOS and α-TOP stimulate peroxidase activity of cytochrome c. Enhanced peroxidase activity was also observed in isolated rat liver mitochondria incubated with α-TOS and tBOOH. A mitochondria-targeted derivative of TOS, triphenylphosphonium-TOS (mito-VES), was more efficient in inducing H2O2-dependent apoptosis in mouse embryonic cytochrome c(+/+) cells than in cytochrome c(-/-) cells. Essential for execution of the apoptotic program peroxidase activation of cytochrome c by α-TOS may contribute to its known anti-cancer pharmacological activity.
the Biomedical Research Center University Hospital Hradec Kralove 569810 Czech Republic
See more in PubMed
Evans H. M., Bishop K. S. (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56, 650–651 PubMed
Tappel A. L. (1970) Biological antioxidant protection against lipid peroxidation damage. Am. J. Clin. Nutr. 23, 1137–1139 PubMed
Packer L. (1991) Protective role of vitamin E in biological systems. Am. J. Clin. Nutr. 53, 1050S–1055S PubMed
Niki E., Traber M. G. (2012) A history of vitamin E. Ann. Nutr. Metab. 61, 207–212 PubMed
Myung S. K., Ju W., Cho B., Oh S. W., Park S. M., Koo B. K., Park B. J., Korean Meta-Analysis Study G. (2013) Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ 346, f10. PubMed PMC
Dolara P., Bigagli E., Collins A. (2012) Antioxidant vitamins and mineral supplementation, life span expansion and cancer incidence: a critical commentary. Eur. J. Nutr. 51, 769–781 PubMed
Abner E. L., Schmitt F. A., Mendiondo M. S., Marcum J. L., Kryscio R. J. (2011) Vitamin E and all-cause mortality: a meta-analysis. Curr Aging Sci 4, 158–170 PubMed PMC
Ricciarelli R., Zingg J. M., Azzi A. (2001) Vitamin E: protective role of a Janus molecule. FASEB J. 15, 2314–2325 PubMed
Kagan V. E. (1989) Tocopherol stabilizes membrane against phospholipase A, free fatty acids, and lysophospholipids. Ann. N.Y. Acad. Sci. 570, 121–135 PubMed
Galli F., Azzi A. (2010) Present trends in vitamin E research. BioFactors 36, 33–42 PubMed
Neuzil J., Weber T., Gellert N., Weber C. (2001) Selective cancer cell killing by α-tocopheryl succinate. Br. J. Cancer 84, 87–89 PubMed PMC
Rohlena J., Dong L. F., Ralph S. J., Neuzil J. (2011) Anticancer drugs targeting the mitochondrial electron transport chain. Antioxid. Redox Signal. 15, 2951–2974 PubMed
Negis Y., Zingg J. M., Libinaki R., Meydani M., Azzi A. (2009) Vitamin E and cancer. Nutr. Cancer 61, 875–878 PubMed
Azzi A. (2007) Molecular mechanism of α-tocopherol action. Free Radic. Biol. Med. 43, 16–21 PubMed
Kogure K., Manabe S., Hama S., Tokumura A., Fukuzawa K. (2003) Potentiation of anti-cancer effect by intravenous administration of vesiculated α-tocopheryl hemisuccinate on mouse melanoma in vivo. Cancer Lett. 192, 19–24 PubMed
Ralph S. J., Moreno-Sánchez R., Neuzil J., Rodríguez-Enríquez S. (2011) Inhibitors of succinate: quinone reductase/complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm. Res. 28, 2695–2730 PubMed
Dong L. F., Jameson V. J., Tilly D., Cerny J., Mahdavian E., Marín-Hernández A., Hernández-Esquivel L., Rodríguez-Enríquez S., Stursa J., Witting P. K., Stantic B., Rohlena J., Truksa J., Kluckova K., Dyason J. C., Ledvina M., Salvatore B. A., Moreno-Sánchez R., Coster M. J., Ralph S. J., Smith R. A., Neuzil J. (2011) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J. Biol. Chem. 286, 3717–3728 PubMed PMC
Kagan V. E., Tyurin V. A., Jiang J., Tyurina Y. Y., Ritov V. B., Amoscato A. A., Osipov A. N., Belikova N. A., Kapralov A. A., Kini V., Vlasova I. I., Zhao Q., Zou M., Di P., Svistunenko D. A., Kurnikov I. V., Borisenko G. G. (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem. Biol. 1, 223–232 PubMed
Paradies G., Petrosillo G., Paradies V., Ruggiero F. M. (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45, 643–650 PubMed
Kagan V. E., Bayir H. A., Belikova N. A., Kapralov O., Tyurina Y. Y., Tyurin V. A., Jiang J., Stoyanovsky D. A., Wipf P., Kochanek P. M., Greenberger J. S., Pitt B., Shvedova A. A., Borisenko G. (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic. Biol. Med. 46, 1439–1453 PubMed PMC
Kapralov A. A., Kurnikov I. V., Vlasova I. I., Belikova N. A., Tyurin V. A., Basova L. V., Zhao Q., Tyurina Y. Y., Jiang J., Bayir H., Vladimirov Y. A., Kagan V. E. (2007) The hierarchy of structural transitions induced in cytochrome c by anionic phospholipids determines its peroxidase activation and selective peroxidation during apoptosis in cells. Biochemistry 46, 14232–14244 PubMed
Rumbley J. N., Hoang L., Englander S. W. (2002) Recombinant equine cytochrome c in Escherichia coli: high-level expression, characterization, and folding and assembly mutants. Biochemistry 41, 13894–13901 PubMed
Liu W., Rumbley J., Englander S. W., Wand A. J. (2003) Backbone and side-chain heteronuclear resonance assignments and hyperfine NMR shifts in horse cytochrome c. Protein Sci. 12, 2104–2108 PubMed PMC
Krishna M. M., Maity H., Rumbley J. N., Lin Y., Englander S. W. (2006) Order of steps in the cytochrome c folding pathway: evidence for a sequential stabilization mechanism. J. Mol. Biol. 359, 1410–1419 PubMed
Maity H., Rumbley J. N., Englander S. W. (2006) Functional role of a protein foldon: an ω-loop foldon controls the alkaline transition in ferricytochrome c. Proteins 63, 349–355 PubMed
Krishna M. M., Maity H., Rumbley J. N., Englander S. W. (2007) Branching in the sequential folding pathway of cytochrome c. Protein Sci. 16, 1946–1956 PubMed PMC
Pallotti F., Lenaz G. (2007) Isolation and subfractionation of mitochondria from animal cells and tissue culture lines. Methods Cell Biol. 80, 3–44 PubMed
Johnson B. A. (2004) Using NMRView to visualize and analyze the NMR spectra of macromolecules. Methods Mol. Biol. 278, 313–352 PubMed
Goddard T., Kneller D. (2008) SPARKY 3, University of California, San Francisco, CA
Trott O., Olson A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comp. Chem. 31, 455–461 PubMed PMC
Sinibaldi F., Fiorucci L., Patriarca A., Lauceri R., Ferri T., Coletta M., Santucci R. (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry 47, 6928–6935 PubMed
Droghetti E., Oellerich S., Hildebrandt P., Smulevich G. (2006) Heme coordination states of unfolded ferrous cytochrome c. Biophys. J. 91, 3022–3031 PubMed PMC
Maity H., Maity M., Krishna M. M., Mayne L., Englander S. W. (2005) Protein folding: the stepwise assembly of foldon units. Proc. Natl. Acad. Sci. U.S.A. 102, 4741–4746 PubMed PMC
Battistuzzi G., Bortolotti C. A., Bellei M., Di Rocco G., Salewski J., Hildebrandt P., Sola M. (2012) Role of Met80 and Tyr67 in the low-pH conformational equilibria of cytochrome c. Biochemistry 51, 5967–5978 PubMed
Oellerich S., Wackerbarth H., Hildebrandt P. (2002) Spectroscopic characterization of nonnative conformational states of cytochrome c. J. Phys. Chem. B 106, 6566–6580
Marques H. M. (2007) Insights into porphyrin chemistry provided by the microperoxidases, the haempeptides derived from cytochrome c. Dalton Trans. 39, 4371–4385 PubMed
Munro O. Q., Marques H. M. (1996) Heme-peptide models for hemoproteins: 1. solution chemistry of N-acetylmicroperoxidase-8. Inorg. Chem. 35, 3752–3767 PubMed
Antonini E., Brunori M. (1971) The derivatives of ferric hemoglobin and myoglobin. in Hemoglobin and Myoglobin in Their Reactions with Ligands, pp. 40–54, North Holland, Amsterdam
Carraway A. D., McCollum M. G., Peterson J. (1996) Characterization of N-acetylated heme undecapeptide and some of its derivatives in aqueous media: monomeric model systems for hemoproteins. Inorg. Chem. 35, 6885–6891 PubMed
Rytömaa M., Kinnunen P. K. (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J. Biol. Chem. 269, 1770–1774 PubMed
Rytömaa M., Kinnunen P. K. (1995) Reversibility of the binding of cytochrome c to liposomes: implications for lipid-protein interactions. J. Biol. Chem. 270, 3197–3202 PubMed
Kawai C., Prado F. M., Nunes G. L., Di Mascio P., Carmona-Ribeiro A. M., Nantes I. L. (2005) pH-dependent interaction of cytochrome c with mitochondrial mimetic membranes: the role of an array of positively charged amino acids. J. Biol. Chem. 280, 34709–34717 PubMed
Belikova N. A., Tyurina Y. Y., Borisenko G., Tyurin V., Samhan Arias A. K., Yanamala N., Furtmüller P. G., Klein-Seetharaman J., Obinger C., Kagan V. E. (2009) Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin complexes: antioxidant function in mitochondria. J. Am. Chem. Soc. 131, 11288–11289 PubMed
Biswas S., Dodwadkar N. S., Deshpande P. P., Torchilin V. P. (2012) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J. Control Release 159, 393–402 PubMed PMC
Elmore S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495–516 PubMed PMC
Riedl S. J., Salvesen G. S. (2007) The apoptosome: signalling platform of cell death. Nat. Rev. Mol. Cell Biol. 8, 405–413 PubMed
Liu J., Epand R. F., Durrant D., Grossman D., Chi N. W., Epand R. M., Lee R. M. (2008) Role of phospholipid scramblase 3 in the regulation of tumor necrosis factor-α-induced apoptosis. Biochemistry 47, 4518–4529 PubMed
Lacombe M. L., Tokarska-Schlattner M., Epand R. F., Boissan M., Epand R. M., Schlattner U. (2009) Interaction of NDPK-D with cardiolipin-containing membranes: structural basis and implications for mitochondrial physiology. Biochimie 91, 779–783 PubMed
Ji J., Kline A. E., Amoscato A., Samhan-Arias A. K., Sparvero L. J., Tyurin V. A., Tyurina Y. Y., Fink B., Manole M. D., Puccio A. M., Okonkwo D. O., Cheng J. P., Alexander H., Clark R. S., Kochanek P. M., Wipf P., Kagan V. E., Bayir H. (2012) Lipidomics identifies cardiolipin oxidation as a mitochondrial target for redox therapy of brain injury. Nat. Neurosci. 15, 1407–1413 PubMed PMC
Samhan-Arias A. K., Ji J., Demidova O. M., Sparvero L. J., Feng W., Tyurin V., Tyurina Y. Y., Epperly M. W., Shvedova A. A., Greenberger J. S., Bayir H., Kagan V. E., Amoscato A. A. (2012) Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim. Biophys. Acta 1818, 2413–2423 PubMed PMC
Tyurina Y. Y., Poloyac S. M., Tyurin V. A., Kapralov A. A., Jiang J., Anthonymuthu T. S., Kapralova V. I., Vikulina A. S., Jung M. Y., Epperly M. W., Mohammadyani D., Klein-Seetharaman J., Jackson T. C., Kochanek P. M., Pitt B. R., Greenberger J. S., Vladimirov Y. A., Bayir H., Kagan V. E. (2014) A mitochondrial pathway for biosynthesis of lipid mediators. Nat. Chem. 6, 542–552 PubMed PMC
Belikova N. A., Vladimirov Y. A., Osipov A. N., Kapralov A. A., Tyurin V. A., Potapovich M. V., Basova L. V., Peterson J., Kurnikov I. V., Kagan V. E. (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45, 4998–5009 PubMed PMC
Prasad S., Maiti N. C., Mazumdar S., Mitra S. (2002) Reaction of hydrogen peroxide and peroxidase activity in carboxymethylated cytochrome c: spectroscopic and kinetic studies. Biochim. Biophys. Acta 1596, 63–75 PubMed
de Jongh H. H., Ritsema T., Killian J. A. (1995) Lipid specificity for membrane mediated partial unfolding of cytochrome c. FEBS Lett. 360, 255–260 PubMed
Chattopadhyay K., Mazumdar S. (2003) Stabilization of partially folded states of cytochrome c in aqueous surfactant: effects of ionic and hydrophobic interactions. Biochemistry 42, 14606–14613 PubMed
Sanghera N., Pinheiro T. J. (2000) Unfolding and refolding of cytochrome c driven by the interaction with lipid micelles. Protein Sci. 9, 1194–1202 PubMed PMC
Dong L. F., Low P., Dyason J. C., Wang X. F., Prochazka L., Witting P. K., Freeman R., Swettenham E., Valis K., Liu J., Zobalova R., Turanek J., Spitz D. R., Domann F. E., Scheffler I. E., Ralph S. J., Neuzil J. (2008) α-Tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27, 4324–4335 PubMed PMC
Shiau C. W., Huang J. W., Wang D. S., Weng J. R., Yang C. C., Lin C. H., Li C., Chen C. S. (2006) α-Tocopheryl succinate induces apoptosis in prostate cancer cells in part through inhibition of Bcl-xL/Bcl-2 function. J. Biol. Chem. 281, 11819–11825 PubMed
Borisenko G. G., Martin I., Zhao Q., Amoscato A. A., Tyurina Y. Y., Kagan V. E., (2004) Glutathione propagates oxidative stress triggered by myeloperoxidase in HL-60 cells: evidence for glutathionyl radical-induced peroxidation of phospholipids and cytotoxicity. J. Biol. Chem. 279, 23453–23462 PubMed
Davies M. J. (2011) Myeloperoxidase-derived oxidation: mechanisms of biological damage and its prevention. J. Clin. Biochem. Nutr. 48, 8–19 PubMed PMC
Rezk B. M., van der Vijgh W. J., Bast A., Haenen G. R. (2007) α-Tocopheryl phosphate is a novel apoptotic agent. Front. Biosci. 12, 2013–2019 PubMed
Nishio K., Ishida N., Saito Y., Ogawa-Akazawa Y., Shichiri M., Yoshida Y., Hagihara Y., Noguchi N., Chirico J., Atkinson J., Niki E. (2011) α-Tocopheryl phosphate: uptake, hydrolysis, and antioxidant action in cultured cells and mouse. Free Radic. Biol. Med. 50, 1794–1800 PubMed
Munteanu A., Zingg J. M., Ogru E., Libinaki R., Gianello R., West S., Negis Y., Azzi A. (2004) Modulation of cell proliferation and gene expression by α-tocopheryl phosphates: relevance to atherosclerosis and inflammation. Biochem. Biophys. Res. Commun. 318, 311–316 PubMed
Gianello R., Hall W. C., Kennepohl E., Libinaki R., Ogru E. (2007) Subchronic oral toxicity study of mixed tocopheryl phosphates in rats. Int. J. Toxicol. 26, 475–490 PubMed
Neuzil J., Tomasetti M., Zhao Y., Dong L. F., Birringer M., Wang X. F., Low P., Wu K., Salvatore B. A., Ralph S. J. (2007) Vitamin E analogues, a novel group of “mitocans,” as anticancer agents: the importance of being redox-silent. Mol. Pharmacol. 71, 1185–1199 PubMed
Rodríguez-Enríquez S., Hernández-Esquivel L., Marín-Hernández A., Dong L. F., Akporiaye E. T., Neuzil J., Ralph S. J., Moreno-Sánchez R. (2012) Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochim. Biophys. Acta 1817, 1597–1607 PubMed
Liewald F., Demmel N., Wirsching R., Kahle H., Valet G. (1990) Intracellular pH, esterase activity, and DNA measurements of human lung carcinomas by flow cytometry. Cytometry 11, 341–348 PubMed