Targeted in vivo inhibition of specific protein-protein interactions using recombinant antibodies
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25299686
PubMed Central
PMC4192540
DOI
10.1371/journal.pone.0109875
PII: PONE-D-14-19554
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis genetika MeSH
- cytosol imunologie metabolismus MeSH
- fosfotransferasy biosyntéza genetika imunologie MeSH
- mapy interakcí proteinů genetika imunologie MeSH
- proteinkinasy biosyntéza genetika imunologie MeSH
- proteiny huseníčku biosyntéza genetika imunologie MeSH
- protilátky aplikace a dávkování imunologie MeSH
- regulace genové exprese u rostlin MeSH
- rekombinantní proteiny aplikace a dávkování imunologie MeSH
- signální transdukce MeSH
- umlčování genů imunologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- AHP3 protein, Arabidopsis MeSH Prohlížeč
- CKI1 protein, Arabidopsis MeSH Prohlížeč
- fosfotransferasy MeSH
- proteinkinasy MeSH
- proteiny huseníčku MeSH
- protilátky MeSH
- rekombinantní proteiny MeSH
With the growing availability of genomic sequence information, there is an increasing need for gene function analysis. Antibody-mediated "silencing" represents an intriguing alternative for the precise inhibition of a particular function of biomolecules. Here, we describe a method for selecting recombinant antibodies with a specific purpose in mind, which is to inhibit intrinsic protein-protein interactions in the cytosol of plant cells. Experimental procedures were designed for conveniently evaluating desired properties of recombinant antibodies in consecutive steps. Our selection method was successfully used to develop a recombinant antibody inhibiting the interaction of ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 3 with such of its upstream interaction partners as the receiver domain of CYTOKININ INDEPENDENT HISTIDINE KINASE 1. The specific down-regulation of the cytokinin signaling pathway in vivo demonstrates the validity of our approach. This selection method can serve as a prototype for developing unique recombinant antibodies able to interfere with virtually any biomolecule in the living cell.
Zobrazit více v PubMed
Biocca S, Neuberger MS, Cattaneo A (1990) Expression and targeting of intracellular antibodies in mammalian cells. EMBO J 9: 101–108. PubMed PMC
Marasco WA, Haseltine WA, Chen SY (1993) Design, intracellular expression, and activity of a human anti-human immunodeficiency virus type 1 gp120 single-chain antibody. Proc Natl Acad Sci U S A 90: 7889–7893. PubMed PMC
Aires da Silva F, Santa-Marta M, Freitas-Vieira A, Mascarenhas P, Barahona I, et al. (2004) Camelized rabbit-derived VH single-domain intrabodies against Vif strongly neutralize HIV-1 infectivity. J Mol Biol 340: 525–542 10.1016/j.jmb.2004.04.062 PubMed DOI
Alvarez RD, Barnes MN, Gomez-Navarro J, Wang M, Strong TV, et al. (2000) A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): a phase I trial. Clin Cancer Res Off J Am Assoc Cancer Res 6: 3081–3087. PubMed
Paganetti P, Calanca V, Galli C, Stefani M, Molinari M (2005) ?-site specific intrabodies to decrease and prevent generation of Alzheimer's A? peptide. J Cell Biol 168: 863–868 10.1083/jcb.200410047 PubMed DOI PMC
Boonrod K, Galetzka D, Nagy PD, Conrad U, Krczal G (2004) Single-chain antibodies against a plant viral RNA-dependent RNA polymerase confer virus resistance. Nat Biotechnol 22: 856–862 10.1038/nbt983 PubMed DOI
Yajima W, Verma SS, Shah S, Rahman MH, Liang Y, et al. (2010) Expression of anti-sclerotinia scFv in transgenic Brassica napus enhances tolerance against stem rot. New Biotechnol 27: 816–821 10.1016/j.nbt.2010.09.010 PubMed DOI
Malembic-Maher S, Gall FL, Danet J-L, Borne FD de, Bové J-M, et al. (2005) Transformation of tobacco plants for single-chain antibody expression via apoplastic and symplasmic routes, and analysis of their susceptibility to stolbur phytoplasma infection. Plant Sci 168: 349–358 10.1016/j.plantsci.2004.08.008 DOI
Radchuk R, Conrad U, Saalbach I, Giersberg M, Emery RJN, et al. (2010) Abscisic acid deficiency of developing pea embryos achieved by immunomodulation attenuates developmental phase transition and storage metabolism. Plant J Cell Mol Biol 64: 715–730 10.1111/j.1365-313X.2010.04376.x PubMed DOI
Ten Hoopen P, Hunger A, Müller A, Hause B, Kramell R, et al. (2007) Immunomodulation of jasmonate to manipulate the wound response. J Exp Bot 58: 2525–2535 10.1093/jxb/erm122 PubMed DOI
Urakami E, Yamaguchi I, Asami T, Conrad U, Suzuki Y (2008) Immunomodulation of gibberellin biosynthesis using an anti-precursor gibberellin antibody confers gibberellin-deficient phenotypes. Planta 228: 863–873 10.1007/s00425-008-0788-z PubMed DOI
Almquist KC, Niu Y, McLean MD, Mena FL, Yau KYF, et al. (2004) Immunomodulation confers herbicide resistance in plants. Plant Biotechnol J 2: 189–197 10.1111/j.1467-7652.2004.00060.x PubMed DOI
Schwarzländer M, Fricker MD, Müller C, Marty L, Brach T, et al. (2008) Confocal imaging of glutathione redox potential in living plant cells. J Microsc 231: 299–316. PubMed
Schouten A, Roosien J, Bakker J, Schots A (2002) Formation of disulfide bridges by a single-chain Fv antibody in the reducing ectopic environment of the plant cytosol. J Biol Chem 277: 19339–19345 10.1074/jbc.M201245200 PubMed DOI
Owen M, Gandecha A, Cockburn B, Whitelam G (1992) Synthesis of a functional anti-phytochrome single-chain Fv protein in transgenic tobacco. Biotechnol Nat Publ Co 10: 790–794. PubMed
Leblanc N, David K, Grosclaude J, Pradier J-M, Barbier-Brygoo H, et al. (1999) A Novel Immunological Approach Establishes That the Auxin-Binding Protein, Nt-Abp1, Is an Element Involved in Auxin Signaling at the Plasma Membrane. J Biol Chem 274: 28314–28320 10.1074/jbc.274.40.28314 PubMed DOI
Santos MO, Crosby WL, Winkel BSJ (2004) Modulation of flavonoid metabolism in Arabidopsis using a phage-derived antibody. Mol Breed 13: 333–343 10.1023/B:MOLB.0000034088.64105.13 DOI
Miroshnichenko S, Tripp J, Nieden Uz, Neumann D, Conrad U, et al. (2005) Immunomodulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J 41: 269–281 10.1111/j.1365-313X.2004.02290.x PubMed DOI
Jobling SA, Jarman C, Teh M-M, Holmberg N, Blake C, et al. (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nat Biotech 21: 77–80 10.1038/nbt772 PubMed DOI
Grönwall C, Ståhl S (2009) Engineered affinity proteins—Generation and applications. J Biotechnol 140: 254–269 10.1016/j.jbiotec.2009.01.014 PubMed DOI
Visintin M, Tse E, Axelson H, Rabbitts TH, Cattaneo A (1999) Selection of antibodies for intracellular function using a two-hybrid in vivo system. Proc Natl Acad Sci U S A 96: 11723–11728. PubMed PMC
Pörtner-Taliana A, Russell M, Froning KJ, Budworth PR, Comiskey JD, et al. (2000) In vivo selection of single-chain antibodies using a yeast two-hybrid system. J Immunol Methods 238: 161–172. PubMed
Feldhaus MJ, Siegel RW, Opresko LK, Coleman JR, Feldhaus JMW, et al. (2003) Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 21: 163–170 10.1038/nbt785 PubMed DOI
Horák J, Grefen C, Berendzen KW, Hahn A, Stierhof Y-D, et al. (2008) The Arabidopsis thaliana response regulator ARR22 is a putative AHP phospho-histidine phosphatase expressed in the chalaza of developing seeds. BMC Plant Biol 8: 77 10.1186/1471-2229-8-77 PubMed DOI PMC
James P, Halladay J, Craig EA (1996) Genomic Libraries and a Host Strain Designed for Highly Efficient Two-Hybrid Selection in Yeast. Genetics 144: 1425–1436. PubMed PMC
Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 31–34 10.1038/nprot.2007.13 PubMed DOI
Pekárová B, Klumpler T, Třísková O, Horák J, Jansen S, et al. (2011) Structure and binding specificity of the receiver domain of sensor histidine kinase CKI1 from Arabidopsis thaliana. Plant J 67: 827–839 10.1111/j.1365-313X.2011.04637.x PubMed DOI
Citovsky V, Lee L-Y, Vyas S, Glick E, Chen M-H, et al. (2006) Subcellular Localization of Interacting Proteins by Bimolecular Fluorescence Complementation in Planta. J Mol Biol 362: 1120–1131 10.1016/j.jmb.2006.08.017 PubMed DOI
Yoo S-D, Cho Y-H, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565–1572 10.1038/nprot.2007.199 PubMed DOI
Deng Y, Dong H, Mu J, Ren B, Zheng B, et al. (2010) Arabidopsis Histidine Kinase CKI1 Acts Upstream of HISTIDINE PHOSPHOTRANSFER PROTEINS to Regulate Female Gametophyte Development and Vegetative Growth. Plant Cell Online 22: 1232–1248 10.1105/tpc.108.065128 PubMed DOI PMC
Gahrtz M, Conrad U (2009) Immunomodulation of plant function by in vitro selected single-chain Fv intrabodies. Methods Mol Biol Clifton NJ 483: 289–312 10.1007/978-1-59745-407-017 PubMed DOI
De Wildt RM, Mundy CR, Gorick BD, Tomlinson IM (2000) Antibody arrays for high-throughput screening of antibody-antigen interactions. Nat Biotechnol 18: 989–994. PubMed
Kontermann R, Dübel S, editors (2010) Antibody engineering: Volume 2. 2nd ed. Heidelburg: Springer. 600 p.
Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41: 207–234. PubMed
Harwood CR, Cutting SM (1990) Molecular biological methods for Bacillus. Chichester; New York: Wiley.
Kuzmic P (1996) Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. Anal Biochem 237: 260–273 10.1006/abio.1996.0238 PubMed DOI
Müller B, Sheen J (2008) Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis. Nature 453: 1094–1097. PubMed PMC
Hutchison CE, Li J, Argueso C, Gonzalez M, Lee E, et al. (2006) The Arabidopsis Histidine Phosphotransfer Proteins Are Redundant Positive Regulators of Cytokinin Signaling. Plant Cell Online 18: 3073–3087. doi:10.1105/tpc.106.045674. PubMed PMC
Hwang I, Sheen J, Müller B (2012) Cytokinin Signaling Networks. Annu Rev Plant Biol 63: 353–380 10.1146/annurev-arplant-042811-105503 PubMed DOI
Muyldermans S (2001) Single domain camel antibodies: current status. J Biotechnol 74: 277–302. PubMed
Visintin M, Settanni G, Maritan A, Graziosi S, Marks JD, et al. (2002) The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J Mol Biol 317: 73–83 10.1006/jmbi.2002.5392 PubMed DOI
Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997) Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements. Plant Cell Online 9: 1963–1971 10.1105/tpc.9.11.1963 PubMed DOI PMC
Chen JG, Ullah H, Young JC, Sussman MR, Jones AM (2001) ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes Dev 15: 902–911 10.1101/gad.866201 PubMed DOI PMC
David KM, Couch D, Braun N, Brown S, Grosclaude J, et al. (2007) The auxin-binding protein 1 is essential for the control of cell cycle. Plant J 50: 197–206 10.1111/j.1365-313X.2007.03038.x PubMed DOI
Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, et al. (2010) ABP1 Mediates Auxin Inhibition of Clathrin-Dependent Endocytosis in Arabidopsis. Cell 143: 111–121 10.1016/j.cell.2010.09.027 PubMed DOI PMC
Kubeš M, Yang H, Richter GL, Cheng Y, Młodzińska E, et al. (2012) The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69: 640–654 10.1111/j.1365-313X.2011.04818.x PubMed DOI
Tromas A, Paque S, Stierlé V, Quettier A-L, Muller P, et al. (2013) Auxin-Binding Protein 1 is a negative regulator of the SCFTIR1/AFB pathway. Nat Commun 4. Available: http://www.nature.com/ncomms/2013/130920/ncomms3496/fig_tab/ncomms3496_F1.html. Accessed 24 January 2014. PubMed