Integrative analysis of mRNA and miRNA expression profiles and somatic variants in oxysterol signaling in early-stage luminal breast cancer
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37491786
PubMed Central
PMC10552891
DOI
10.1002/1878-0261.13495
Knihovny.cz E-zdroje
- Klíčová slova
- breast cancer, integrative analysis, interaction network, multiomics, oxysterols, survival,
- MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- mikro RNA * genetika metabolismus MeSH
- nádory prsu * patologie MeSH
- oxysteroly * MeSH
- transkriptom genetika MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- messenger RNA MeSH
- mikro RNA * MeSH
- oxysteroly * MeSH
Oxysterols, oxidized derivatives of cholesterol, act in breast cancer (BC) as selective estrogen receptor modulators and affect cholesterol homeostasis, drug transport, nuclear and cell receptors, and other signaling proteins. Using data from three highly overlapping sets of patients (N = 162 in total) with early-stage estrogen-receptor-positive luminal BC-high-coverage targeted DNA sequencing (113 genes), mRNA sequencing, and full micro-RNA (miRNA) transcriptome microarrays-we describe complex oxysterol-related interaction (correlation) networks, with validation in public datasets (n = 538) and 11 databases. The ESR1-CH25H-INSIG1-ABCA9 axis was the most prominent, interconnected through miR-125b-5p, miR-99a-5p, miR-100-5p, miR-143-3p, miR-199b-5p, miR-376a-3p, and miR-376c-3p. Mutations in SC5D, CYP46A1, and its functionally linked gene set were associated with multiple differentially expressed oxysterol-related genes. STARD5 was upregulated in patients with positive lymph node status. High expression of hsa-miR-19b-3p was weakly associated with poor survival. This is the first study of oxysterol-related genes in BC that combines DNA, mRNA, and miRNA multiomics with detailed clinical data. Future studies should provide links between intratumoral oxysterol signaling depicted here, circulating oxysterol levels, and therapy outcomes, enabling eventual clinical exploitation of present findings.
3rd Faculty of Medicine Charles University Prague Czech Republic
Aeskulab k s Prague Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Comprehensive Cancer Center Novy Jicin Hospital Novy Jicin Czech Republic
Department of Oncosurgery MEDICON Prague Czech Republic
Department of Surgery EUC Hospital Zlin and Tomas Bata University in Zlin Czech Republic
Toxicogenomics Unit National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. PubMed
Crimini E, Repetto M, Aftimos P, Botticelli A, Marchetti P, Curigliano G. Precision medicine in breast cancer: from clinical trials to clinical practice. Cancer Treat Rev. 2021;98:102223. PubMed
Olivier M, Asmis R, Hawkins GA, Howard TD, Cox LA. The need for multi‐omics biomarker signatures in precision medicine. Int J Mol Sci. 2019;20(19):E4781. PubMed PMC
Schroepfer GJ. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 2000;80(1):361–554. PubMed
Brown AJ, Sharpe LJ, Rogers MJ. Oxysterols: from physiological tuners to pharmacological opportunities. Br J Pharmacol. 2021;178(16):3089–3103. PubMed
Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, et al. 27‐hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med. 2007;13(10):1185–1192. PubMed
Kloudova A, Guengerich FP, Soucek P. The role of oxysterols in human cancer. Trends Endocrinol Metab. 2017;28(7):485–496. PubMed PMC
Kloudova‐Spalenkova A, Holy P, Soucek P. Oxysterols in cancer management: from therapy to biomarkers. Br J Pharmacol. 2021;178(16):3235–3247. PubMed
Catalanotto C, Cogoni C, Zardo G. MicroRNA in control of gene expression: an overview of nuclear functions. Int J Mol Sci. 2016;17(10):1712. PubMed PMC
Loh H‐Y, Norman BP, Lai K‐S, Rahman NMANA, Alitheen NBM, Osman MA. The regulatory role of MicroRNAs in breast cancer. Int J Mol Sci. 2019;20(19):4940. PubMed PMC
Kandettu A, Radhakrishnan R, Chakrabarty S, Sriharikrishnaa S, Kabekkodu SP. The emerging role of miRNA clusters in breast cancer progression. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188413. PubMed
DiMarco DM, Fernandez ML. The regulation of reverse cholesterol transport and cellular cholesterol homeostasis by microRNAs. Biology (Basel). 2015;4(3):494–511. PubMed PMC
Rotllan N, Fernández‐Hernando C. MicroRNA regulation of cholesterol metabolism. Cholesterol. 2012;2012:847849. PubMed PMC
Mutemberezi V, Guillemot‐Legris O, Muccioli GG. Oxysterols: from cholesterol metabolites to key mediators. Prog Lipid Res. 2016;64:152–169. PubMed
Holý P, Hlaváč V, Ostašov P, Brynychová V, Koževnikovová R, Trnková M, et al. Germline and somatic genetic variability of oxysterol‐related genes in breast cancer patients with early disease of the luminal subtype. Biochimie. 2022;199:158–169. PubMed
Holy P, Kloudova A, Soucek P. Importance of genetic background of oxysterol signaling in cancer. Biochimie. 2018;153:109–138. PubMed
Kloudova A, Brynychova V, Vaclavikova R, Vrana D, Gatek J, Mrhalova M, et al. Expression of oxysterol pathway genes in oestrogen‐positive breast carcinomas. Clin Endocrinol (Oxf). 2017;86(6):852–861. PubMed
Tavassoli F, Devilee P. Pathology and genetics of tumours of the breast and female genital organs. Lyon, France: IARC Press; 2003.
Cheang MCU, Chia SK, Voduc D, Gao D, Leung S, Snider J, et al. Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst. 2009;101(10):736–750. PubMed PMC
Fragomeni SM, Sciallis A, Jeruss JS. Molecular subtypes and local‐regional control of breast cancer. Surg Oncol Clin N Am. 2018;27(1):95–120. PubMed PMC
Coates AS, Winer EP, Goldhirsch A, Gelber RD, Gnant M, Piccart‐Gebhart M, et al. Tailoring therapies–improving the management of early breast cancer: St Gallen international expert consensus on the primary therapy of early breast cancer 2015. Ann Oncol. 2015;26(8):1533–1546. PubMed PMC
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8(1):118–127. PubMed
Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al. Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One. 2011;6(2):e17238. PubMed PMC
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
Frankish A, Diekhans M, Jungreis I, Lagarde J, Loveland JE, Mudge JM, et al. GENCODE 2021. Nucleic Acids Res. 2020;49(D1):D916–D923. 10.1093/nar/gkaa1087 PubMed DOI PMC
Bray NL, Pimentel H, Melsted P, Pachter L. Near‐optimal probabilistic RNA‐seq quantification. Nat Biotechnol. 2016;34(5):525–527. PubMed
Somatic short variant discovery (SNVs + indels). GATK, https://gatk.broadinstitute.org/hc/en‐us/articles/360035894731‐Somatic‐short‐variant‐discovery‐SNVs‐Indels‐. Accessed 22 March 2022.
O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–D745. PubMed PMC
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2022. Available online at: https://www.R-project.org/
Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–140. PubMed PMC
Mar JC. The rise of the distributions: why non‐normality is important for understanding the transcriptome and beyond. Biophys Rev. 2019;11(1):89–94. PubMed PMC
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B Methodol. 1995;57(1):289–300.
Ru Y, Kechris KJ, Tabakoff B, Hoffman P, Radcliffe RA, Bowler R, et al. The multiMiR R package and database: integration of microRNA–target interactions along with their disease and drug associations. Nucleic Acids Res. 2014;42(17):e133. PubMed PMC
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–2504. 10.1101/gr.1239303 PubMed DOI PMC
Kolde R. pheatmaps: Pretty heatmaps. 2019. Available online at: https://CRAN.R-project.org/package=pheatmap
Rohart F, Gautier B, Singh A, Cao K‐AL. mixOmics: an R package for ‘omics feature selection and multiple data integration. PLoS Comput Biol. 2017;13(11):e1005752. PubMed PMC
Singh A, Shannon CP, Gautier B, Rohart F, Vacher M, Tebbutt SJ, et al. DIABLO: an integrative approach for identifying key molecular drivers from multi‐omics assays. Bioinformatics. 2019;35(17):3055–3062. PubMed PMC
Tweedie S, Braschi B, Gray K, Jones TEM, Seal RL, Yates B, et al. Genenames.Org: the HGNC and VGNC resources in 2021. Nucleic Acids Res. 2021;49(D1):D939–D946. PubMed PMC
Xu T, Su N, Liu L, Zhang J, Wang H, Zhang W, et al. miRBaseConverter: an R/Bioconductor package for converting and retrieving miRNA name, accession, sequence and family information in different versions of miRBase. BMC Bioinformatics. 2018;19(19):514. PubMed PMC
Kabekkodu SP, Shukla V, Varghese VK, D' Souza J, Chakrabarty S, Satyamoorthy K. Clustered miRNAs and their role in biological functions and diseases. Biol Rev Camb Philos Soc. 2018;93(4):1955–1986. PubMed
Brufsky AM, Dickler MN. Estrogen receptor‐positive breast cancer: exploiting signaling pathways implicated in endocrine resistance. Oncologist. 2018;23(5):528–539. PubMed PMC
Cao Q, Liu Z, Xiong Y, Zhong Z, Ye Q. Multiple roles of 25‐hydroxycholesterol in lipid metabolism, antivirus process, inflammatory response, and cell survival. Oxid Med Cell Longev. 2020;2020:8893305. PubMed PMC
Lappano R, Recchia AG, De Francesco EM, Angelone T, Cerra MC, Picard D, et al. The cholesterol metabolite 25‐hydroxycholesterol activates estrogen receptor α‐mediated signaling in cancer cells and in cardiomyocytes. PloS One. 2011;6(1):e16631. PubMed PMC
Ouyang S, Mo Z, Sun S, Yin K, Lv Y. Emerging role of Insig‐1 in lipid metabolism and lipid disorders. Clin Chim Acta. 2020;508:206–212. PubMed
Simigdala N, Gao Q, Pancholi S, Roberg‐Larsen H, Zvelebil M, Ribas R, et al. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor‐positive breast cancer. Breast Cancer Res. 2016;18(1):58. PubMed PMC
Peelman F, Labeur C, Vanloo B, Roosbeek S, Devaud C, Duverger N, et al. Characterization of the ABCA transporter subfamily: identification of prokaryotic and eukaryotic members, phylogeny and topology. J Mol Biol. 2003;325(2):259–274. PubMed
Piehler A, Kaminski WE, Wenzel JJ, Langmann T, Schmitz G. Molecular structure of a novel cholesterol‐responsive a subclass ABC transporter, ABCA9. Biochem Biophys Res Commun. 2002;295(2):408–416. PubMed
Dvorak P, Pesta M, Soucek P. ABC gene expression profiles have clinical importance and possibly form a new hallmark of cancer. Tumour Biol. 2017;39(5):1010428317699800. PubMed
Hlavac V, Brynychova V, Vaclavikova R, Ehrlichova M, Vrana D, Pecha V, et al. The expression profile of ATP‐binding cassette transporter genes in breast carcinoma. Pharmacogenomics. 2013;14(5):515–529. PubMed
Søkilde R, Persson H, Ehinger A, Pirona AC, Fernö M, Hegardt C, et al. Refinement of breast cancer molecular classification by miRNA expression profiles. BMC Genomics. 2019;20(1):503. PubMed PMC
Haakensen VD, Nygaard V, Greger L, Aure MR, Fromm B, Bukholm IRK, et al. Subtype‐specific micro‐RNA expression signatures in breast cancer progression. Int J Cancer. 2016;139(5):1117–1128. PubMed
Wang S, Li L, Yang M, Wang X, Zhang H, Wu N, et al. Identification of three circulating MicroRNAs in plasma as clinical biomarkers for breast cancer detection. J Clin Med. 2023;12(1):322. PubMed PMC
Huo D, Clayton WM, Yoshimatsu TF, Chen J, Olopade OI. Identification of a circulating microRNA signature to distinguish recurrence in breast cancer patients. Oncotarget. 2016;7(34):55231–55248. PubMed PMC
Rodriguez‐Agudo D, Malacrida L, Kakiyama G, Sparrer T, Fortes C, Maceyka M, et al. StarD5: an ER stress protein regulates plasma membrane and intracellular cholesterol homeostasis. J Lipid Res. 2019;60(6):1087–1098. PubMed PMC
Liu Q, Du X, Yu Z, Yao Q, Meng X, Zhang K, et al. STARD5 as a potential clinical target of hepatocellular carcinoma. Med Oncol. 2022;39(10):156. PubMed
Zhao W, Gupta A, Krawczyk J, Gupta S. The miR‐17‐92 cluster: Yin and Yang in human cancers. Cancer Treat Res Commun. 2022;33:100647. PubMed
Olive V, Bennett MJ, Walker JC, Ma C, Jiang I, Cordon‐Cardo C, et al. miR‐19 is a key oncogenic component of mir‐17‐92. Genes Dev. 2009;23(24):2839–2849. PubMed PMC
Li C, Zhang J, Ma Z, Zhang F, Yu W. miR‐19b serves as a prognostic biomarker of breast cancer and promotes tumor progression through PI3K/AKT signaling pathway. Onco Targets Ther. 2018;11:4087–4095. PubMed PMC
Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet. 2001;29(4):365–371. PubMed
Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002;30(1):207–210. PubMed PMC
Brazma A, Ball C, Bumgarner R, Furlanello C, Miller M, Quackenbush J, et al. MINSEQE: Minimum Information about a high‐throughput Nucleotide SeQuencing Experiment – a proposal for standards in functional genomic data reporting. Zenodo; 2012. 10.5281/zenodo.5706412 DOI