Oxysterols in cancer management: From therapy to biomarkers
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
32986851
DOI
10.1111/bph.15273
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, cancer, disease, oxysterols, therapy,
- MeSH
- biologické markery MeSH
- imunitní systém MeSH
- imunoterapie MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- oxysteroly * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické markery MeSH
- oxysteroly * MeSH
Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
3rd Faculty of Medicine Charles University Prague Czech Republic
Biomedical Center Faculty of Medicine in Pilsen Charles University Pilsen Czech Republic
Department of Toxicogenomics National Institute of Public Health Prague Czech Republic
Zobrazit více v PubMed
Alexander, S. P., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., … Sharman, J. L. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246. https://doi.org/10.1111/bph.14750
Alexander, S. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., … Southan, C. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 176, S397-S493. https://doi.org/10.1111/bph.14753
Baek, A. E., Yu, Y. A., He, S., Wardell, S. E., Chang, C. Y., Kwon, S., … Nelson, E. R. (2017). The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nature Communications, 8(1), 864. https://doi.org/10.1038/s41467-017-00910-z
Bischoff, P. L., Holl, V., Coelho, D., Dufour, P., Weltin, D., & Luu, B. (2000). Apoptosis at the interface of immunosuppressive and anticancer activities: The examples of two classes of chemical inducers, oxysterols and alkylating agents. Current Medicinal Chemistry, 7(7), 693-713. https://doi.org/10.2174/0929867003374769
Brown, A. J., Sharpe, L. J., & Rogers, M. J. (2020). Oxysterols: From physiological tuners to pharmacological opportunities. British Journal of Pharmacology. https://doi.org/10.1111/bph.15073
Carpenter, K. J., Valfort, A. C., Steinauer, N., Chatterjee, A., Abuirqeba, S., Majidi, S., … Flaveny, C. A. (2019). LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Scientific Reports, 9, 1-18. https://doi.org/10.1038/s41598-019-56038-1
Carvalho, J. F., Silva, M. M., Moreira, J. N., Simões, S., & Sá e Melo, M. L. (2010). Sterols as anticancer agents: Synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. Journal of Medicinal Chemistry, 53(21), 7632-7638. https://doi.org/10.1021/jm1007769
Carvalho, J. F., Silva, M. M., Moreira, J. N., Simões, S., Sá, E., & Melo, M. L. (2011). Selective cytotoxicity of oxysterols through structural modulation on rings A and B. Synthesis, in vitro evaluation, and SAR. Journal of Medicinal Chemistry, 54(18), 6375-6393. https://doi.org/10.1021/jm200803d
Chisaki, I., Kobayashi, M., Itagaki, S., Hirano, T., & Iseki, K. (2009). Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(11), 2396-2403. https://doi.org/10.1016/j.bbamem.2009.08.014
Dalenc, F., Iuliano, L., Filleron, T., Zerbinati, C., Voisin, M., Arellano, C., … Silvente-Poirot, S. (2017). Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. Journal of Steroid Biochemistry and Molecular Biology, 169, 210-218. https://doi.org/10.1016/j.jsbmb.2016.06.010
de Medina, P., Diallo, K., Huc-Claustre, E., Attia, M., Soulès, R., Silvente-Poirot, S., & Poirot, M. (2020). The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. British Journal of Pharmacology. https://doi.org/10.1111/bph.15205
de Medina, P., Paillasse, M. R., Segala, G., Voisin, M., Mhamdi, L., Dalenc, F., … Poirot, M. (2013). Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nature Communications, 4, 1840. https://doi.org/10.1038/ncomms2835
de Weille, J., Fabre, C., & Bakalara, N. (2013). Oxysterols in cancer cell proliferation and death. Biochemical Pharmacology, 86(1), 154-160. https://doi.org/10.1016/j.bcp.2013.02.029
Di Gangi, I. M., Mazza, T., Fontana, A., Copetti, M., Fusilli, C., Ippolito, A., … Pazienza, V. (2016). Metabolomic profile in pancreatic cancer patients: A consensus-based approach to identify highly discriminating metabolites. Oncotarget, 7(5), 5815-5829. https://doi.org/10.18632/oncotarget.6808
DuSell, C. D., & McDonnell, D. P. (2008). 27-Hydroxycholesterol: A potential endogenous regulator of estrogen receptor signaling. Trends in Pharmacological Sciences, 29(10), 510-514. https://doi.org/10.1016/j.tips.2008.07.003
DuSell, C. D., Umetani, M., Shaul, P. W., Mangelsdorf, D. J., & McDonnell, D. P. (2008). 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Molecular Endocrinology, 22(1), 65-77. https://doi.org/10.1210/me.2007-0383
ElAli, A., & Hermann, D. M. (2012). Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathology, 22(2), 175-187. https://doi.org/10.1111/j.1750-3639.2011.00517.x
Gaffney, D. K., Feix, J. B., Schwarz, H. P., Struve, M. F., & Sieber, F. (1991). Cholesterol content but not plasma membrane fluidity influences the susceptibility of L1210 leukemia cells to merocyanine 540-sensitized irradiation. Photochemistry and Photobiology, 54(5), 717-723. https://doi.org/10.1111/j.1751-1097.1991.tb02080.x
Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317-1332. https://doi.org/10.1007/s00018-015-2127-4
Guo, F., Hong, W., Yang, M., Xu, D., Bai, Q., Li, X., & Chen, Z. (2018). Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochemical and Biophysical Research Communications, 504(4), 892-898. https://doi.org/10.1016/j.bbrc.2018.09.058
He, S., & Nelson, E. R. (2017). 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas, 104, 29-35. https://doi.org/10.1016/j.maturitas.2017.07.014
Hlavac, V., Holy, P., & Soucek, P. (2020). Pharmacogenomics to predict tumor therapy response: A focus on ATP-binding cassette transporters and cytochromes P450. Journal of Personalized Medicine, 10(3), 108. https://doi.org/10.3390/jpm10030108
Holy, P., Kloudova, A., & Soucek, P. (2018). Importance of genetic background of oxysterol signaling in cancer. Biochimie, 153, 109-138. https://doi.org/10.1016/j.biochi.2018.04.023
Hyun, J. W., Holl, V., Weltin, D., Dufour, P., Luu, B., & Bischoff, P. (2002). Effects of combinations of 7beta-hydroxycholesterol and anticancer drugs or ionizing radiation on the proliferation of cultured tumor cells. Anticancer Research, 22(2A), 943-948.
Kandutsch, A. A., Chen, H. W., & Heiniger, H. J. (1978). Biological activity of some oxygenated sterols. Science, 201(4355), 498-501. https://doi.org/10.1126/science.663671
Kim, W. K., Meliton, V., Tetradis, S., Weinmaster, G., Hahn, T. J., Carlson, M., … Parhami, F. (2010). Osteogenic oxysterol, 20(S)-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. Journal of Bone and Mineral Research, 25(4), 782-795. https://doi.org/10.1359/jbmr.091024
Kloudova, A., Guengerich, F. P., & Soucek, P. (2017). The role of oxysterols in human cancer. Trends in Endocrinology and Metabolism, 28(7), 485-496. https://doi.org/10.1016/j.tem.2017.03.002
Kloudova-Spalenkova, A., Ueng, Y. F., Wei, S., Kopeckova, K., Peter Guengerich, F., & Soucek, P. (2020). Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. The Journal of Steroid Biochemistry and Molecular Biology, 197, 105566. https://doi.org/10.1016/j.jsbmb.2019.105566
Kovac, U., Skubic, C., Bohinc, L., Rozman, D., & Rezen, T. (2019). Oxysterols and gastrointestinal cancers around the clock. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00483
Kunicka, T., & Soucek, P. (2014). Importance of ABCC1 for cancer therapy and prognosis. Drug Metabolism Reviews, 46(3), 325-342. https://doi.org/10.3109/03602532.2014.901348
Lanterna, C., Musumeci, A., Raccosta, L., Corna, G., Moresco, M., Maggioni, D., … Russo, V. (2016). The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunology Immunotherapy, 65(11), 1303-1315. https://doi.org/10.1007/s00262-016-1884-8
Lappano, R., Recchia, A. G., De Francesco, E. M., Angelone, T., Cerra, M. C., Picard, D., & Maggiolini, M. (2011). The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS ONE, 6(1), e16631. https://doi.org/10.1371/journal.pone.0016631
Le Cornet, C., Johnson, T. S., Lu, D. L., Kaaks, R., & Fortner, R. T. (2020). Association between lifestyle, dietary, reproductive, and anthropometric factors and circulating 27-hydroxycholesterol in EPIC-Heidelberg. Cancer Causes & Control, 31(2), 181-192. https://doi.org/10.1007/s10552-019-01259-y
Liang, H., & Shen, X. (2020). LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.04.137
Linseisen, J., Wolfram, G., & Miller, A. B. (2002). Plasma 7β-hydroxycholesterol as a possible predictor of lung cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 11(12), 1630-1637.
Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44(5), 479-496. https://doi.org/10.3109/10715761003667554
Liu, L., Li, M. Y., Xing, Y., Wang, X. Y., & Wang, Y. (2019). The oncogenic roles of 27-hydroxycholesterol in glioblastoma. Oncology Letters, 18(4), 3623-3629. https://doi.org/10.3892/ol.2019.10690
Lu, D. L., Le Cornet, C., Sookthai, D., Johnson, T. S., Kaaks, R., & Fortner, R. T. (2019). Circulating 27-hydroxycholesterol and breast cancer risk: Results from the EPIC-Heidelberg cohort. Journal of the National Cancer Institute, 111(4), 365-371. https://doi.org/10.1093/jnci/djy115
Lütjohann, D., Björkhem, I., Friedrichs, S., Kerksiek, A., Geilenkeuser, W. J., Lövgren-Sandblom, A., … Schött, H. F. (2018). International descriptive and interventional survey for oxycholesterol determination by gas- and liquid-chromatographic methods. Biochimie, 153, 26-32. https://doi.org/10.1016/j.biochi.2018.07.016
Monzel, J. V., Budde, T., Meyer Zu Schwabedissen, H. E., Schwebe, M., Bien-Möller, S., Lütjohann, D., & Grube, M. (2017). Doxorubicin enhances oxysterol levels resulting in a LXR-mediated upregulation of cardiac cholesterol transporters. Biochemical Pharmacology, 144, 108-119. https://doi.org/10.1016/j.bcp.2017.08.008
Moresco, M. A., Raccosta, L., Corna, G., Maggioni, D., Soncini, M., Bicciato, S., … Russo, V. (2018). Enzymatic inactivation of oxysterols in breast tumor cells constraints metastasis formation by reprogramming the metastatic lung microenvironment. Frontiers in Immunology, 9, 2251. https://doi.org/10.3389/fimmu.2018.02251
Mutemberezi, V., Guillemot-Legris, O., & Muccioli, G. G. (2016). Oxysterols: From cholesterol metabolites to key mediators. Progress in Lipid Research, 64, 152-169. https://doi.org/10.1016/j.plipres.2016.09.002
Nelson, E. R. (2018). The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Molecular and Cellular Endocrinology, 466, 73-80. https://doi.org/10.1016/j.mce.2017.09.021
Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., … McDonnell, D. P. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 342(6162), 1094-1098. https://doi.org/10.1126/science.1241908
Poirot, M., & Silvente-Poirot, S. (2018). The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochemical Pharmacology, 153, 75-81. https://doi.org/10.1016/j.bcp.2018.01.046
Pontini, L., & Marinozzi, M. (2020). Shedding light on the roles of liver X receptors in cancer by using chemical probes. British Journal of Pharmacology. https://doi.org/10.1111/bph.15200
Raccosta, L., Fontana, R., Corna, G., Maggioni, D., Moresco, M., & Russo, V. (2016). Cholesterol metabolites and tumor microenvironment: The road towards clinical translation. Cancer Immunology, Immunotherapy, 65(1), 111-117. https://doi.org/10.1007/s00262-015-1779-0
Raccosta, L., Fontana, R., Maggioni, D., Lanterna, C., Villablanca, E. J., Paniccia, A., … Russo, V. (2013). The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. The Journal of Experimental Medicine, 210(9), 1711-1728. https://doi.org/10.1084/jem.20130440
Raza, S., Meyer, M., Schommer, J., Hammer, K. D., Guo, B., & Ghribi, O. (2016). 27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Medical Oncology, 33(2), 12. https://doi.org/10.1007/s12032-015-0725-5
Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews. Cancer, 18(7), 452-464. https://doi.org/10.1038/s41568-018-0005-8
Rosa Fernandes, L., Stern, A. C., Cavaglieri, R. C., Nogueira, F. C., Domont, G., Palmisano, G., & Bydlowski, S. P. (2017). 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. Journal of Proteomics, 151, 12-23. https://doi.org/10.1016/j.jprot.2016.06.011
Rossin, D., Dias, I. H. K., Solej, M., Milic, I., Pitt, A. R., Iaia, N., … Biasi, F. (2019). Increased production of 27-hydroxycholesterol in human colorectal cancer advanced stage: Possible contribution to cancer cell survival and infiltration. Free Radical Biology & Medicine, 136, 35-44. https://doi.org/10.1016/j.freeradbiomed.2019.03.020
Ruiz, J. L. M., Fernandes, L. R., Levy, D., & Bydlowski, S. P. (2013). Interrelationship between ATP-binding cassette transporters and oxysterols. Biochemical Pharmacology, 86(1), 80-88. https://doi.org/10.1016/j.bcp.2013.02.033
Russo, V. (2011). Metabolism, LXR/LXR ligands, and tumor immune escape. Journal of Leukocyte Biology, 90(4), 673-679. https://doi.org/10.1189/jlb.0411198
Saito, H., Kitame, F., Uemura, Y., & Ishida, N. (1983). The regulating effect of cholesterol derivatives isolated from human sera on lymphocyte response to phytohemagglutinin. The Tohoku Journal of Experimental Medicine, 140(3), 245-258. https://doi.org/10.1620/tjem.140.245
Segala, G., de Medina, P., Iuliano, L., Zerbinati, C., Paillasse, M. R., Noguer, E., … Poirot, M. (2013). 5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochemical Pharmacology, 86(1), 175-189. https://doi.org/10.1016/j.bcp.2013.02.031
Serhan, N., Mouchel, P. L., de Medina, P., Segala, G., Mougel, A., Saland, E., … Larrue, C. (2020). Dendrogenin A synergizes with cytarabine to kill acute myeloid leukemia cells in vitro and in vivo. Cancers, 12(7), 1725. https://doi.org/10.3390/cancers12071725
Simigdala, N., Gao, Q., Pancholi, S., Roberg-Larsen, H., Zvelebil, M., Ribas, R., … Martin, L. A. (2016). Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Research, 18(1), 58. https://doi.org/10.1186/s13058-016-0713-5
Sissung, T. M., Baum, C. E., Kirkland, C. T., Gao, R., Gardner, E. R., & Figg, W. D. (2010). Pharmacogenetics of membrane transporters: An update on current approaches. Molecular Biotechnology, 44(2), 152-167. https://doi.org/10.1007/s12033-009-9220-6
Solheim, S., Hutchinson, S. A., Lundanes, E., Wilson, S. R., Thorne, J. L., & Roberg-Larsen, H. (2019). Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. The Journal of Steroid Biochemistry and Molecular Biology, 192, 105309. https://doi.org/10.1016/j.jsbmb.2019.02.004
Soucek, P., Vrana, D., Ueng, Y. F., Wei, S., Kozevnikovova, R., & Guengerich, F. P. (2017). Selective changes in cholesterol metabolite levels in plasma of breast cancer patients after tumor removal. Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/cclm-2017-0409
Stappenbeck, F., Wang, F., Tang, L. Y., Zhang, Y. E., & Parhami, F. (2019). Inhibition of non-small cell lung cancer cells by Oxy210, an oxysterol-derivative that antagonizes TGFβ and Hedgehog signaling. Cell, 8(10). https://doi.org/10.3390/cells8101297
Tavazoie, M. F., Pollack, I., Tanqueco, R., Ostendorf, B. N., Reis, B. S., Gonsalves, F. C., … Tavazoie, S. F. (2018). LXR/ApoE activation restricts innate immune suppression in cancer. Cell, 172(4), 825-840. https://doi.org/10.1016/j.cell.2017.12.026
Traversari, C., & Russo, V. (2012). Control of the immune system by oxysterols and cancer development. Current Opinion in Pharmacology, 12(6), 729-735. https://doi.org/10.1016/j.coph.2012.07.003
Traversari, C., Sozzani, S., Steffensen, K. R., & Russo, V. (2014). LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. European Journal of Immunology, 44(7), 1896-1903. https://doi.org/10.1002/eji.201344292
Umetani, M., Domoto, H., Gormley, A. K., Yuhanna, I. S., Cummins, C. L., Javitt, N. B., … Mangelsdorf, D. J. (2007). 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nature Medicine, 13(10), 1185-1192. https://doi.org/10.1038/nm1641
van der Schoor, L. W., Verkade, H. J., Kuipers, F., & Jonker, J. W. (2015). New insights in the biology of ABC transporters ABCC2 and ABCC3: Impact on drug disposition. Expert Opin Drug Met, 11(2), 273-293. https://doi.org/10.1517/17425255.2015.981152
Villablanca, E. J., Raccosta, L., Zhou, D., Fontana, R., Maggioni, D., Negro, A., … Russo, V. (2010). Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nature Medicine, 16(1), 98-105. https://doi.org/10.1038/nm.2074
Voisin, M., de Medina, P., Mallinger, A., Dalenc, F., Huc-Claustre, E., Leignadier, J., … Silvente-Poirot, S. (2017). Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 114(44), E9346-E9355. https://doi.org/10.1073/pnas.1707965114
Wang, C., He, H., & Fang, W. (2020). Oncogenic roles of the cholesterol metabolite 25-hydroxycholesterol in bladder cancer. Oncology Letters, 19(6), 3671-3676. https://doi.org/10.3892/ol.2020.11475
Wang, C. W., Huang, C. C., Chou, P. H., Chang, Y. P., Wei, S., Guengerich, F. P., … Ueng, Y. F. (2017). 7-Ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: Estrogenic activity and mTOR pathway. Oncotarget, 8(39), 66033-66050. https://doi.org/10.18632/oncotarget.19789
Wang, F., Stappenbeck, F., Matsui, W., & Parhami, F. (2017). Inhibition of pancreatic cancer cell-induced paracrine Hedgehog signaling by liver X receptor agonists and Oxy16, a naturally occurring oxysterol. Journal of Cellular Biochemistry, 118(3), 499-509. https://doi.org/10.1002/jcb.25668
Wang, F., Stappenbeck, F., & Parhami, F. (2019). Inhibition of Hedgehog signaling in fibroblasts, pancreatic, and lung tumor cells by Oxy186, an oxysterol analogue with drug-like properties. Cell, 8(5). https://doi.org/10.3390/cells8050509
Wang, S., Yao, Y., Rao, C., Zheng, G., & Chen, W. (2019). 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-κB signaling pathway. International Journal of Oncology, 54(3), 966-980. https://doi.org/10.3892/ijo.2019.4684
Wang, S. F., Chou, Y. C., Mazumder, N., Kao, F. J., Nagy, L. D., Guengerich, F. P., … Ueng, Y. F. (2013). 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells. Biochemical Pharmacology, 86(4), 548-560. https://doi.org/10.1016/j.bcp.2013.06.006
Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., McDonald, J. G., Yuhanna, I. S., … Shaul, P. W. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Reports, 5(3), 637-645. https://doi.org/10.1016/j.celrep.2013.10.006
Zampieri, L., Bianchi, P., Ruff, P., & Arbuthnot, P. (2002). Differential modulation by estradiol of P-glycoprotein drug resistance protein expression in cultured MCF7 and T47D breast cancer cells. Anticancer Research, 22(4), 2253-2259.
Zmysłowski, A., & Szterk, A. (2019). Oxysterols as a biomarker in diseases. Clinica Chimica Acta, 491, 103-113. https://doi.org/10.1016/j.cca.2019.01.022
Effects of 7-ketocholesterol on tamoxifen efficacy in breast carcinoma cell line models in vitro