Oxysterols in cancer management: From therapy to biomarkers

. 2021 Aug ; 178 (16) : 3235-3247. [epub] 20201018

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32986851

Oxysterols are oxidized derivatives of cholesterol, both endogenous and exogenous. They have been implicated in numerous pathologies, including cancer. In addition to their roles in carcinogenesis, proliferation, migration, apoptosis, and multiple signalling pathways, they have been shown to modulate cancer therapy. They are known to affect therapy of hormonally positive breast cancer through modulating oestrogen receptor activity. Oxysterols have also been shown in various in vitro models to influence efficacy of chemotherapeutics, such as doxorubicin, vincristine, cisplatin, 5-fluorouracil, and others. Their effects on the immune system should also be considered in immunotherapy. Selective anti-cancer cytotoxic properties of some oxysterols make them candidates for new therapeutic molecules. Finally, differences in oxysterol levels in blood of cancer patients in different stages or versus healthy controls, and in tumour versus non-tumour tissues, show potential of oxysterols as biomarkers for cancer management and patient stratification for optimization of therapy. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.

Zobrazit více v PubMed

Alexander, S. P., Cidlowski, J. A., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., … Sharman, J. L. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Nuclear hormone receptors. British Journal of Pharmacology, 176, S229-S246. https://doi.org/10.1111/bph.14750

Alexander, S. P., Kelly, E., Mathie, A., Peters, J. A., Veale, E. L., Armstrong, J. F., … Southan, C. (2019). The Concise Guide to PHARMACOLOGY 2019/20: Transporters. British Journal of Pharmacology, 176, S397-S493. https://doi.org/10.1111/bph.14753

Baek, A. E., Yu, Y. A., He, S., Wardell, S. E., Chang, C. Y., Kwon, S., … Nelson, E. R. (2017). The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nature Communications, 8(1), 864. https://doi.org/10.1038/s41467-017-00910-z

Bischoff, P. L., Holl, V., Coelho, D., Dufour, P., Weltin, D., & Luu, B. (2000). Apoptosis at the interface of immunosuppressive and anticancer activities: The examples of two classes of chemical inducers, oxysterols and alkylating agents. Current Medicinal Chemistry, 7(7), 693-713. https://doi.org/10.2174/0929867003374769

Brown, A. J., Sharpe, L. J., & Rogers, M. J. (2020). Oxysterols: From physiological tuners to pharmacological opportunities. British Journal of Pharmacology. https://doi.org/10.1111/bph.15073

Carpenter, K. J., Valfort, A. C., Steinauer, N., Chatterjee, A., Abuirqeba, S., Majidi, S., … Flaveny, C. A. (2019). LXR-inverse agonism stimulates immune-mediated tumor destruction by enhancing CD8 T-cell activity in triple negative breast cancer. Scientific Reports, 9, 1-18. https://doi.org/10.1038/s41598-019-56038-1

Carvalho, J. F., Silva, M. M., Moreira, J. N., Simões, S., & Sá e Melo, M. L. (2010). Sterols as anticancer agents: Synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. Journal of Medicinal Chemistry, 53(21), 7632-7638. https://doi.org/10.1021/jm1007769

Carvalho, J. F., Silva, M. M., Moreira, J. N., Simões, S., Sá, E., & Melo, M. L. (2011). Selective cytotoxicity of oxysterols through structural modulation on rings A and B. Synthesis, in vitro evaluation, and SAR. Journal of Medicinal Chemistry, 54(18), 6375-6393. https://doi.org/10.1021/jm200803d

Chisaki, I., Kobayashi, M., Itagaki, S., Hirano, T., & Iseki, K. (2009). Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1788(11), 2396-2403. https://doi.org/10.1016/j.bbamem.2009.08.014

Dalenc, F., Iuliano, L., Filleron, T., Zerbinati, C., Voisin, M., Arellano, C., … Silvente-Poirot, S. (2017). Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. Journal of Steroid Biochemistry and Molecular Biology, 169, 210-218. https://doi.org/10.1016/j.jsbmb.2016.06.010

de Medina, P., Diallo, K., Huc-Claustre, E., Attia, M., Soulès, R., Silvente-Poirot, S., & Poirot, M. (2020). The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. British Journal of Pharmacology. https://doi.org/10.1111/bph.15205

de Medina, P., Paillasse, M. R., Segala, G., Voisin, M., Mhamdi, L., Dalenc, F., … Poirot, M. (2013). Dendrogenin A arises from cholesterol and histamine metabolism and shows cell differentiation and anti-tumour properties. Nature Communications, 4, 1840. https://doi.org/10.1038/ncomms2835

de Weille, J., Fabre, C., & Bakalara, N. (2013). Oxysterols in cancer cell proliferation and death. Biochemical Pharmacology, 86(1), 154-160. https://doi.org/10.1016/j.bcp.2013.02.029

Di Gangi, I. M., Mazza, T., Fontana, A., Copetti, M., Fusilli, C., Ippolito, A., … Pazienza, V. (2016). Metabolomic profile in pancreatic cancer patients: A consensus-based approach to identify highly discriminating metabolites. Oncotarget, 7(5), 5815-5829. https://doi.org/10.18632/oncotarget.6808

DuSell, C. D., & McDonnell, D. P. (2008). 27-Hydroxycholesterol: A potential endogenous regulator of estrogen receptor signaling. Trends in Pharmacological Sciences, 29(10), 510-514. https://doi.org/10.1016/j.tips.2008.07.003

DuSell, C. D., Umetani, M., Shaul, P. W., Mangelsdorf, D. J., & McDonnell, D. P. (2008). 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Molecular Endocrinology, 22(1), 65-77. https://doi.org/10.1210/me.2007-0383

ElAli, A., & Hermann, D. M. (2012). Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathology, 22(2), 175-187. https://doi.org/10.1111/j.1750-3639.2011.00517.x

Gaffney, D. K., Feix, J. B., Schwarz, H. P., Struve, M. F., & Sieber, F. (1991). Cholesterol content but not plasma membrane fluidity influences the susceptibility of L1210 leukemia cells to merocyanine 540-sensitized irradiation. Photochemistry and Photobiology, 54(5), 717-723. https://doi.org/10.1111/j.1751-1097.1991.tb02080.x

Gorojankina, T. (2016). Hedgehog signaling pathway: A novel model and molecular mechanisms of signal transduction. Cellular and Molecular Life Sciences, 73(7), 1317-1332. https://doi.org/10.1007/s00018-015-2127-4

Guo, F., Hong, W., Yang, M., Xu, D., Bai, Q., Li, X., & Chen, Z. (2018). Upregulation of 24(R/S),25-epoxycholesterol and 27-hydroxycholesterol suppresses the proliferation and migration of gastric cancer cells. Biochemical and Biophysical Research Communications, 504(4), 892-898. https://doi.org/10.1016/j.bbrc.2018.09.058

He, S., & Nelson, E. R. (2017). 27-Hydroxycholesterol, an endogenous selective estrogen receptor modulator. Maturitas, 104, 29-35. https://doi.org/10.1016/j.maturitas.2017.07.014

Hlavac, V., Holy, P., & Soucek, P. (2020). Pharmacogenomics to predict tumor therapy response: A focus on ATP-binding cassette transporters and cytochromes P450. Journal of Personalized Medicine, 10(3), 108. https://doi.org/10.3390/jpm10030108

Holy, P., Kloudova, A., & Soucek, P. (2018). Importance of genetic background of oxysterol signaling in cancer. Biochimie, 153, 109-138. https://doi.org/10.1016/j.biochi.2018.04.023

Hyun, J. W., Holl, V., Weltin, D., Dufour, P., Luu, B., & Bischoff, P. (2002). Effects of combinations of 7beta-hydroxycholesterol and anticancer drugs or ionizing radiation on the proliferation of cultured tumor cells. Anticancer Research, 22(2A), 943-948.

Kandutsch, A. A., Chen, H. W., & Heiniger, H. J. (1978). Biological activity of some oxygenated sterols. Science, 201(4355), 498-501. https://doi.org/10.1126/science.663671

Kim, W. K., Meliton, V., Tetradis, S., Weinmaster, G., Hahn, T. J., Carlson, M., … Parhami, F. (2010). Osteogenic oxysterol, 20(S)-hydroxycholesterol, induces notch target gene expression in bone marrow stromal cells. Journal of Bone and Mineral Research, 25(4), 782-795. https://doi.org/10.1359/jbmr.091024

Kloudova, A., Guengerich, F. P., & Soucek, P. (2017). The role of oxysterols in human cancer. Trends in Endocrinology and Metabolism, 28(7), 485-496. https://doi.org/10.1016/j.tem.2017.03.002

Kloudova-Spalenkova, A., Ueng, Y. F., Wei, S., Kopeckova, K., Peter Guengerich, F., & Soucek, P. (2020). Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. The Journal of Steroid Biochemistry and Molecular Biology, 197, 105566. https://doi.org/10.1016/j.jsbmb.2019.105566

Kovac, U., Skubic, C., Bohinc, L., Rozman, D., & Rezen, T. (2019). Oxysterols and gastrointestinal cancers around the clock. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00483

Kunicka, T., & Soucek, P. (2014). Importance of ABCC1 for cancer therapy and prognosis. Drug Metabolism Reviews, 46(3), 325-342. https://doi.org/10.3109/03602532.2014.901348

Lanterna, C., Musumeci, A., Raccosta, L., Corna, G., Moresco, M., Maggioni, D., … Russo, V. (2016). The administration of drugs inhibiting cholesterol/oxysterol synthesis is safe and increases the efficacy of immunotherapeutic regimens in tumor-bearing mice. Cancer Immunology Immunotherapy, 65(11), 1303-1315. https://doi.org/10.1007/s00262-016-1884-8

Lappano, R., Recchia, A. G., De Francesco, E. M., Angelone, T., Cerra, M. C., Picard, D., & Maggiolini, M. (2011). The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS ONE, 6(1), e16631. https://doi.org/10.1371/journal.pone.0016631

Le Cornet, C., Johnson, T. S., Lu, D. L., Kaaks, R., & Fortner, R. T. (2020). Association between lifestyle, dietary, reproductive, and anthropometric factors and circulating 27-hydroxycholesterol in EPIC-Heidelberg. Cancer Causes & Control, 31(2), 181-192. https://doi.org/10.1007/s10552-019-01259-y

Liang, H., & Shen, X. (2020). LXR activation radiosensitizes non-small cell lung cancer by restricting myeloid-derived suppressor cells. Biochemical and Biophysical Research Communications. https://doi.org/10.1016/j.bbrc.2020.04.137

Linseisen, J., Wolfram, G., & Miller, A. B. (2002). Plasma 7β-hydroxycholesterol as a possible predictor of lung cancer risk. Cancer Epidemiology, Biomarkers & Prevention, 11(12), 1630-1637.

Liou, G. Y., & Storz, P. (2010). Reactive oxygen species in cancer. Free Radical Research, 44(5), 479-496. https://doi.org/10.3109/10715761003667554

Liu, L., Li, M. Y., Xing, Y., Wang, X. Y., & Wang, Y. (2019). The oncogenic roles of 27-hydroxycholesterol in glioblastoma. Oncology Letters, 18(4), 3623-3629. https://doi.org/10.3892/ol.2019.10690

Lu, D. L., Le Cornet, C., Sookthai, D., Johnson, T. S., Kaaks, R., & Fortner, R. T. (2019). Circulating 27-hydroxycholesterol and breast cancer risk: Results from the EPIC-Heidelberg cohort. Journal of the National Cancer Institute, 111(4), 365-371. https://doi.org/10.1093/jnci/djy115

Lütjohann, D., Björkhem, I., Friedrichs, S., Kerksiek, A., Geilenkeuser, W. J., Lövgren-Sandblom, A., … Schött, H. F. (2018). International descriptive and interventional survey for oxycholesterol determination by gas- and liquid-chromatographic methods. Biochimie, 153, 26-32. https://doi.org/10.1016/j.biochi.2018.07.016

Monzel, J. V., Budde, T., Meyer Zu Schwabedissen, H. E., Schwebe, M., Bien-Möller, S., Lütjohann, D., & Grube, M. (2017). Doxorubicin enhances oxysterol levels resulting in a LXR-mediated upregulation of cardiac cholesterol transporters. Biochemical Pharmacology, 144, 108-119. https://doi.org/10.1016/j.bcp.2017.08.008

Moresco, M. A., Raccosta, L., Corna, G., Maggioni, D., Soncini, M., Bicciato, S., … Russo, V. (2018). Enzymatic inactivation of oxysterols in breast tumor cells constraints metastasis formation by reprogramming the metastatic lung microenvironment. Frontiers in Immunology, 9, 2251. https://doi.org/10.3389/fimmu.2018.02251

Mutemberezi, V., Guillemot-Legris, O., & Muccioli, G. G. (2016). Oxysterols: From cholesterol metabolites to key mediators. Progress in Lipid Research, 64, 152-169. https://doi.org/10.1016/j.plipres.2016.09.002

Nelson, E. R. (2018). The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Molecular and Cellular Endocrinology, 466, 73-80. https://doi.org/10.1016/j.mce.2017.09.021

Nelson, E. R., Wardell, S. E., Jasper, J. S., Park, S., Suchindran, S., Howe, M. K., … McDonnell, D. P. (2013). 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science, 342(6162), 1094-1098. https://doi.org/10.1126/science.1241908

Poirot, M., & Silvente-Poirot, S. (2018). The tumor-suppressor cholesterol metabolite, dendrogenin A, is a new class of LXR modulator activating lethal autophagy in cancers. Biochemical Pharmacology, 153, 75-81. https://doi.org/10.1016/j.bcp.2018.01.046

Pontini, L., & Marinozzi, M. (2020). Shedding light on the roles of liver X receptors in cancer by using chemical probes. British Journal of Pharmacology. https://doi.org/10.1111/bph.15200

Raccosta, L., Fontana, R., Corna, G., Maggioni, D., Moresco, M., & Russo, V. (2016). Cholesterol metabolites and tumor microenvironment: The road towards clinical translation. Cancer Immunology, Immunotherapy, 65(1), 111-117. https://doi.org/10.1007/s00262-015-1779-0

Raccosta, L., Fontana, R., Maggioni, D., Lanterna, C., Villablanca, E. J., Paniccia, A., … Russo, V. (2013). The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils. The Journal of Experimental Medicine, 210(9), 1711-1728. https://doi.org/10.1084/jem.20130440

Raza, S., Meyer, M., Schommer, J., Hammer, K. D., Guo, B., & Ghribi, O. (2016). 27-Hydroxycholesterol stimulates cell proliferation and resistance to docetaxel-induced apoptosis in prostate epithelial cells. Medical Oncology, 33(2), 12. https://doi.org/10.1007/s12032-015-0725-5

Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews. Cancer, 18(7), 452-464. https://doi.org/10.1038/s41568-018-0005-8

Rosa Fernandes, L., Stern, A. C., Cavaglieri, R. C., Nogueira, F. C., Domont, G., Palmisano, G., & Bydlowski, S. P. (2017). 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. Journal of Proteomics, 151, 12-23. https://doi.org/10.1016/j.jprot.2016.06.011

Rossin, D., Dias, I. H. K., Solej, M., Milic, I., Pitt, A. R., Iaia, N., … Biasi, F. (2019). Increased production of 27-hydroxycholesterol in human colorectal cancer advanced stage: Possible contribution to cancer cell survival and infiltration. Free Radical Biology & Medicine, 136, 35-44. https://doi.org/10.1016/j.freeradbiomed.2019.03.020

Ruiz, J. L. M., Fernandes, L. R., Levy, D., & Bydlowski, S. P. (2013). Interrelationship between ATP-binding cassette transporters and oxysterols. Biochemical Pharmacology, 86(1), 80-88. https://doi.org/10.1016/j.bcp.2013.02.033

Russo, V. (2011). Metabolism, LXR/LXR ligands, and tumor immune escape. Journal of Leukocyte Biology, 90(4), 673-679. https://doi.org/10.1189/jlb.0411198

Saito, H., Kitame, F., Uemura, Y., & Ishida, N. (1983). The regulating effect of cholesterol derivatives isolated from human sera on lymphocyte response to phytohemagglutinin. The Tohoku Journal of Experimental Medicine, 140(3), 245-258. https://doi.org/10.1620/tjem.140.245

Segala, G., de Medina, P., Iuliano, L., Zerbinati, C., Paillasse, M. R., Noguer, E., … Poirot, M. (2013). 5,6-Epoxy-cholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochemical Pharmacology, 86(1), 175-189. https://doi.org/10.1016/j.bcp.2013.02.031

Serhan, N., Mouchel, P. L., de Medina, P., Segala, G., Mougel, A., Saland, E., … Larrue, C. (2020). Dendrogenin A synergizes with cytarabine to kill acute myeloid leukemia cells in vitro and in vivo. Cancers, 12(7), 1725. https://doi.org/10.3390/cancers12071725

Simigdala, N., Gao, Q., Pancholi, S., Roberg-Larsen, H., Zvelebil, M., Ribas, R., … Martin, L. A. (2016). Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Research, 18(1), 58. https://doi.org/10.1186/s13058-016-0713-5

Sissung, T. M., Baum, C. E., Kirkland, C. T., Gao, R., Gardner, E. R., & Figg, W. D. (2010). Pharmacogenetics of membrane transporters: An update on current approaches. Molecular Biotechnology, 44(2), 152-167. https://doi.org/10.1007/s12033-009-9220-6

Solheim, S., Hutchinson, S. A., Lundanes, E., Wilson, S. R., Thorne, J. L., & Roberg-Larsen, H. (2019). Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. The Journal of Steroid Biochemistry and Molecular Biology, 192, 105309. https://doi.org/10.1016/j.jsbmb.2019.02.004

Soucek, P., Vrana, D., Ueng, Y. F., Wei, S., Kozevnikovova, R., & Guengerich, F. P. (2017). Selective changes in cholesterol metabolite levels in plasma of breast cancer patients after tumor removal. Clinical Chemistry and Laboratory Medicine. https://doi.org/10.1515/cclm-2017-0409

Stappenbeck, F., Wang, F., Tang, L. Y., Zhang, Y. E., & Parhami, F. (2019). Inhibition of non-small cell lung cancer cells by Oxy210, an oxysterol-derivative that antagonizes TGFβ and Hedgehog signaling. Cell, 8(10). https://doi.org/10.3390/cells8101297

Tavazoie, M. F., Pollack, I., Tanqueco, R., Ostendorf, B. N., Reis, B. S., Gonsalves, F. C., … Tavazoie, S. F. (2018). LXR/ApoE activation restricts innate immune suppression in cancer. Cell, 172(4), 825-840. https://doi.org/10.1016/j.cell.2017.12.026

Traversari, C., & Russo, V. (2012). Control of the immune system by oxysterols and cancer development. Current Opinion in Pharmacology, 12(6), 729-735. https://doi.org/10.1016/j.coph.2012.07.003

Traversari, C., Sozzani, S., Steffensen, K. R., & Russo, V. (2014). LXR-dependent and -independent effects of oxysterols on immunity and tumor growth. European Journal of Immunology, 44(7), 1896-1903. https://doi.org/10.1002/eji.201344292

Umetani, M., Domoto, H., Gormley, A. K., Yuhanna, I. S., Cummins, C. L., Javitt, N. B., … Mangelsdorf, D. J. (2007). 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nature Medicine, 13(10), 1185-1192. https://doi.org/10.1038/nm1641

van der Schoor, L. W., Verkade, H. J., Kuipers, F., & Jonker, J. W. (2015). New insights in the biology of ABC transporters ABCC2 and ABCC3: Impact on drug disposition. Expert Opin Drug Met, 11(2), 273-293. https://doi.org/10.1517/17425255.2015.981152

Villablanca, E. J., Raccosta, L., Zhou, D., Fontana, R., Maggioni, D., Negro, A., … Russo, V. (2010). Tumor-mediated liver X receptor-α activation inhibits CC chemokine receptor-7 expression on dendritic cells and dampens antitumor responses. Nature Medicine, 16(1), 98-105. https://doi.org/10.1038/nm.2074

Voisin, M., de Medina, P., Mallinger, A., Dalenc, F., Huc-Claustre, E., Leignadier, J., … Silvente-Poirot, S. (2017). Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 114(44), E9346-E9355. https://doi.org/10.1073/pnas.1707965114

Wang, C., He, H., & Fang, W. (2020). Oncogenic roles of the cholesterol metabolite 25-hydroxycholesterol in bladder cancer. Oncology Letters, 19(6), 3671-3676. https://doi.org/10.3892/ol.2020.11475

Wang, C. W., Huang, C. C., Chou, P. H., Chang, Y. P., Wei, S., Guengerich, F. P., … Ueng, Y. F. (2017). 7-Ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: Estrogenic activity and mTOR pathway. Oncotarget, 8(39), 66033-66050. https://doi.org/10.18632/oncotarget.19789

Wang, F., Stappenbeck, F., Matsui, W., & Parhami, F. (2017). Inhibition of pancreatic cancer cell-induced paracrine Hedgehog signaling by liver X receptor agonists and Oxy16, a naturally occurring oxysterol. Journal of Cellular Biochemistry, 118(3), 499-509. https://doi.org/10.1002/jcb.25668

Wang, F., Stappenbeck, F., & Parhami, F. (2019). Inhibition of Hedgehog signaling in fibroblasts, pancreatic, and lung tumor cells by Oxy186, an oxysterol analogue with drug-like properties. Cell, 8(5). https://doi.org/10.3390/cells8050509

Wang, S., Yao, Y., Rao, C., Zheng, G., & Chen, W. (2019). 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-κB signaling pathway. International Journal of Oncology, 54(3), 966-980. https://doi.org/10.3892/ijo.2019.4684

Wang, S. F., Chou, Y. C., Mazumder, N., Kao, F. J., Nagy, L. D., Guengerich, F. P., … Ueng, Y. F. (2013). 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells. Biochemical Pharmacology, 86(4), 548-560. https://doi.org/10.1016/j.bcp.2013.06.006

Wu, Q., Ishikawa, T., Sirianni, R., Tang, H., McDonald, J. G., Yuhanna, I. S., … Shaul, P. W. (2013). 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Reports, 5(3), 637-645. https://doi.org/10.1016/j.celrep.2013.10.006

Zampieri, L., Bianchi, P., Ruff, P., & Arbuthnot, P. (2002). Differential modulation by estradiol of P-glycoprotein drug resistance protein expression in cultured MCF7 and T47D breast cancer cells. Anticancer Research, 22(4), 2253-2259.

Zmysłowski, A., & Szterk, A. (2019). Oxysterols as a biomarker in diseases. Clinica Chimica Acta, 491, 103-113. https://doi.org/10.1016/j.cca.2019.01.022

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...