• This record comes from PubMed

Effects of 7-ketocholesterol on tamoxifen efficacy in breast carcinoma cell line models in vitro

. 2023 Sep ; 232 () : 106354. [epub] 20230619

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Grant support
R01 GM118122 NIGMS NIH HHS - United States

Links

PubMed 37343688
PubMed Central PMC10529436
DOI 10.1016/j.jsbmb.2023.106354
PII: S0960-0760(23)00109-7
Knihovny.cz E-resources

Oxysterols play significant roles in many physiological and pathological processes including cancer. They modulate some of the cancer hallmarks pathways, influence the efficacy of anti-cancer drugs, and associate with patient survival. In this study, we aimed to analyze the role of 7-ketocholesterol (7-KC) in breast carcinoma cells and its potential modulation of the tamoxifen effect. 7-KC effects were studied in two estrogen receptor (ER)-positive (MCF-7 and T47D) and one ER-negative (BT-20) breast cancer cell lines. First, we tested the viability of cells in the presence of 7-KC. Next, we co-incubated cells with tamoxifen and sublethal concentrations of 7-KC. We also tested changes in caspase 3/7 activity, deregulation of the cell cycle, and changes in expression of selected genes/proteins in the presence of tamoxifen, 7-KC, or their combination. Finally, we analyzed the effect of 7-KC on cellular migration and invasion. We found that the presence of 7-KC slightly decreases the efficacy of tamoxifen in MCF-7 cells, while an increased effect of tamoxifen and higher caspase 3/7 activity was observed in the BT-20 cell line. In the T47D cell line, we did not find any modulation of tamoxifen efficacy by the presence of 7-KC. Expression analysis showed the deregulation in CYP1A1 and CYP1B1 with the opposite trend in MCF-7 and BT-20 cells. Moreover, 7-KC increased cellular migration and invasion potential regardless of the ER status. This study shows that 7-KC can modulate tamoxifen efficacy as well as cellular migration and invasion, making 7-KC a promising candidate for future studies.

See more in PubMed

Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate – a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B-Statistical Methodology 57:289–300 doi:10.1111/j.2517-6161.1995.tb02031.x DOI

Brauch H, Mürdter TE, Eichelbaum M et al. (2009) Pharmacogenomics of tamoxifen therapy. Clin Chem 55:1770–1782 doi:10.1373/clinchem.2008.121756 PubMed DOI

Brockdorff BL, Skouv J, Reiter BE et al. (2000) Increased expression of cytochrome p450 1A1 and 1B1 genes in anti-estrogen-resistant human breast cancer cell lines. Int J Cancer 88:902–906 doi:10.1002/1097-0215(20001215)88:6<902::aid-ijc10>3.0.co;2-c PubMed DOI

Carvalho JF, Silva MM, Moreira JN et al. (2010) Sterols as anticancer agents: synthesis of ring-B oxygenated steroids, cytotoxic profile, and comprehensive SAR analysis. J Med Chem 53, 7632–8 doi: 10.1021/jm1007769. PubMed DOI

Carrera AN, Grant MKO, Zordoky BN (2020) CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 134:2897–2927 doi:10.1042/CS20200310 PubMed DOI PMC

Chen L, Zhang L, Xian G et al. (2017) 25-Hydroxycholesterol promotes migration and invasion of lung adenocarcinoma cells. Biochem Biophys Res Commun 484:857–863 doi:10.1016/j.bbrc.2017.02.003 PubMed DOI

Chisaki I, Kobayashi M, Itagaki S et al. (2009) Liver X receptor regulates expression of MRP2 but not that of MDR1 and BCRP in the liver. Biochim Biophys Acta 1788:2396–2403 doi:10.1016/j.bbamem.2009.08.014 PubMed DOI

Choi HK, Yang JW, Roh SH et al. (2007) Induction of multidrug resistance associated protein 2 in tamoxifen-resistant breast cancer cells. Endocr Relat Cancer 14:293–303 doi:10.1677/ERC-06-0016 PubMed DOI

Crewe HK, Notley LM, Wunsch RM et al. (2002) Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4’-hydroxy and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30:869–874 doi:10.1124/dmd.30.8.869 PubMed DOI

Dalenc F, Iuliano L, Filleron T et al. (2017) Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. JSteroid BiochemMolecular Biol 169:210–218 doi:10.1016/j.jsbmb.2016.06.010 PubMed DOI

de Medina P, Diallo K, Huc-Claustre E, et al. (2021) The 5,6-epoxycholesterol metabolic pathway in breast cancer: Emergence of new pharmacological targets. Br J Pharmacol 178, 3248–3260. doi: 10.1111/bph.15205 PubMed DOI

de Medina P, Paillasse MR, Segala G, et al. (2010) Identification and pharmacological characterization of cholesterol-5,6-epoxide hydrolase as a target for tamoxifen and AEBS ligands. Proc Natl Acad Sci U S A 107, 13520–5. doi: 10.1073/pnas.1002922107 PubMed DOI PMC

de Medina P, Silvente-Poirot S, Poirot M (2009) Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation. Autophagy 5, 1066–7. doi: 10.4161/auto.5.7.9820 PubMed DOI

de Weille J, Fabre C, Bakalara N (2013) Oxysterols in cancer cell proliferation and death. Biochem Pharmacol 86:154–160 doi:10.1016/j.bcp.2013.02.029 PubMed DOI

ElAli A, Hermann DM (2012) Liver X receptor activation enhances blood-brain barrier integrity in the ischemic brain and increases the abundance of ATP-binding cassette transporters ABCB1 and ABCC1 on brain capillary cells. Brain Pathol 22:175–187 doi:10.1111/j.1750-3639.2011.00517.x PubMed DOI PMC

Gajjar K, Martin-Hirsch PL, Martin FL (2012) CYP1B1 and hormone-induced cancer. Cancer Lett 324:13–30 doi:10.1016/j.canlet.2012.04.021 PubMed DOI

Ghosh S, Khare SK (2016) Biodegradation of cytotoxic 7-Ketocholesterol by Pseudomonas aeruginosa PseA. Bioresour Technol 213:44–49 doi:10.1016/j.biortech.2016.03.079 PubMed DOI

Ghzaiel I, Sassi K, Zarrouk A, et al. (2022) Sources of 7-ketocholesterol, metabolism and inactivation strategies: food and biomedical applications. Redox Experimental Medicine, 2022(1), R40–R56. doi: 10.1530/REM-22-0005 DOI

Helmschrodt C, Becker S, Schroter J et al. (2013) Fast LC-MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin Chim Acta 425:3–8 doi:10.1016/j.cca.2013.06.022 PubMed DOI

Hlaváč V, Brynychová V, Václavíková R et al. (2013) The expression profile of ATP-binding cassette transporter genes in breast carcinoma. Pharmacogenomics 14:515–529 doi:10.2217/pgs.13.26 PubMed DOI

Honda K, Matoba T, Antoku Y et al. (2018) Lipid-Lowering Therapy With Ezetimibe Decreases Spontaneous Atherothrombotic Occlusions in a Rabbit Model of Plaque Erosion: A Role of Serum Oxysterols. Arteriosclerosis Thrombosis and Vascular Biology 38:757–771 doi:10.1161/atvbaha.117.310244 PubMed DOI

Hyun JW, Holl V, Weltin D et al. (2002) Effects of combinations of 7beta-hydroxycholesterol and anticancer drugs or ionizing radiation on the proliferation of cultured tumor cells. Anticancer Res 22, 943–8 PubMed

Hwang P, Matin A (1989) Interactions of sterols with antiestrogen-binding sites - structural requirements for high-affinity binding. Journal of Lipid Research 30:239–245 PubMed

Jiao KL, Zhen J, Wu MX et al. (2020). 27-Hydroxycholesterol-induced EndMT acts via STAT3 signaling to promote breast cancer cell migration by altering the tumor microenvironment. Cancer Biol Med, 17(1), 88–+. doi:10.20892/j.issn.2095-3941.2019.0262 PubMed DOI PMC

Jusakul A, Yongvanit P, Loilome W et al. (2011) Mechanisms of oxysterol-induced carcinogenesis. Lipids Health Dis 10 doi:10.1186/1476-511x-10-44 PubMed DOI PMC

Kedjouar B, de Médina P, Oulad-Abdelghani M et al. (2004) Molecular characterization of the microsomal tamoxifen binding site. J Biol Chem 279:34048–34061 doi:10.1074/jbc.M405230200 PubMed DOI

Kloudova A, Guengerich FP, Soucek P (2017) The Role of Oxysterols in Human Cancer. Trends Endocrinol Metab 28:485–496 doi:10.1016/j.tem.2017.03.002 PubMed DOI PMC

Kloudova-Spalenkova A, Holy P, Soucek P (2021) Oxysterols in cancer management: From therapy to biomarkers Br J Pharmacol 178:3235–3247 doi:10.1111/bph.15273 PubMed DOI

Kloudova-Spalenkova A, Ueng YF, Wei S et al. (2020) Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data. J Steroid Biochem Mol Biol 197:105566 doi:10.1016/j.jsbmb.2019.105566 PubMed DOI PMC

Kwon YJ, Baek HS, Ye DJ et al. (2016) CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/β-catenin signaling via Sp1 upregulation. PLoS One 11:e0151598 doi:10.1371/journal.pone.0151598 PubMed DOI PMC

Lappano R, Recchia AG, De Francesco EM et al. (2011) The cholesterol metabolite 25-hydroxycholesterol activates estrogen receptor α-mediated signaling in cancer cells and in cardiomyocytes. PLoS One 6:e16631 doi:10.1371/journal.pone.0016631 PubMed DOI PMC

Lei JT, Anurag M, Haricharan S et al. (2019) Endocrine therapy resistance: new insights. Breast 48 Suppl 1:S26–S30 doi:10.1016/S0960-9776(19)31118-X PubMed DOI PMC

Liang ZJ, Jiao W, Wang LP et al. (2022) CYP27A1 inhibits proliferation and migration of clear cell renal cell carcinoma via activation of LXRs/ABCA1. Exp Cell Res, 419(1) doi:10.1016/j.yexcr.2022.113279 PubMed DOI

Liu L, Li MY, Xing Y et al. (2019) The oncogenic roles of 27-hydroxycholesterol in glioblastoma. Oncol Lett 18, 3623–3629 doi: 10.3892/ol.2019.10690 PubMed DOI PMC

Manna S, Holz MK (2016) Tamoxifen Action in ER-Negative Breast Cancer. Sign Transduct Insights 5:1–7 doi:10.4137/STI.S29901 PubMed DOI PMC

Mashat RM, Zielinska HA, Holly JMP et al. (2021) A Role for ER-Beta in the Effects of Low-Density Lipoprotein Cholesterol and 27-Hydroxycholesterol on Breast Cancer Progression: Involvement of the IGF Signalling Pathway? Cells 11 doi:10.3390/cells11010094 PubMed DOI PMC

Nury T, Yammine A, Ghzaiel I et al. (2021) Attenuation of 7-ketocholesterol- and 7β-hydroxycholesterol-induced oxiapoptophagy by nutrients, synthetic molecules and oils: Potential for the prevention of age-related diseases. Ageing Res Rev 68:101324 doi:10.1016/j.arr.2021.101324 PubMed DOI

Osborne CK, Boldt DH, Clark GM et al. (1983) Effects of tamoxifen on human breast cancer cell cycle kinetics: accumulation of cells in early G1 phase. Cancer Res 43:3583–3585 PubMed

Panini SR, Sinensky MS (2001) Mechanisms of oxysterol-induced apoptosis. Curr Opin Lipidol 12:529–533 doi:10.1097/00041433-200110000-00008 PubMed DOI

Ravi S, Duraisamy P, Krishnan M et al. (2021) An insight on 7- ketocholesterol mediated inflammation in atherosclerosis and potential therapeutics. Steroids 172:108854 doi:10.1016/j.steroids.2021.108854 PubMed DOI

Rosa Fernandes L, Stern AC, Cavaglieri RC et al. (2017) 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. J Proteomics 151, 12–23 doi: 10.1016/j.jprot.2016.06.011 PubMed DOI

Saini S, Hirata H, Majid S et al. (2009) Functional significance of cytochrome P450 1B1 in endometrial carcinogenesis. Cancer Res 69:7038–7045 doi:10.1158/0008-5472.CAN09-1691 PubMed DOI

Simigdala N, Gao Q, Pancholi S et al. (2016) Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res 18:58 doi:10.1186/s13058-016-0713-5 PubMed DOI PMC

Soucek P, Anzenbacher P, Skoumalová I et al. (2005) Expression of cytochrome P450 genes in CD34+ hematopoietic stem and progenitor cells. Stem Cells 23:1417–1422 doi:10.1634/stemcells.2005-0066 PubMed DOI

Soucek P, Martin MV, Ueng YF et al. (1995) Identification of a common cytochrome P450 epitope near the conserved heme-binding peptide with antibodies raised against recombinant cytochrome P450 family 2 proteins. Biochemistry 34:16013–16021 doi:10.1021/bi00049a015 PubMed DOI

Soucek P, Vrana D, Ueng YF et al. (2018) Selective changes in cholesterol metabolite levels in plasma of breast cancer patients after tumor removal Clin Chem Lab Med 56:e78–e81 doi:10.1515/cclm-2017-0409 PubMed DOI PMC

Stappenbeck F, Wang F, Tang LY et al. (2019) Inhibition of Non-Small Cell Lung Cancer Cells by Oxy210, an Oxysterol-Derivative that Antagonizes TGF beta and Hedgehog Signaling. Cells 8 doi: 10.3390/cells8101297 PubMed DOI PMC

Uchikawa T, Matoba T, Kawahara T et al. (2022) Dietary 7-ketocholesterol exacerbates myocardial ischemia-reperfusion injury in mice through monocyte/macrophage-mediated inflammation. Sci Rep 12:14902 doi:10.1038/s41598-022-19065-z PubMed DOI PMC

Umetani M, Domoto H, Gormley AK et al. (2007) 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat Med 13:1185–1192 doi:10.1038/nm1641 PubMed DOI

Vejux A, Abed-Vieillard D, Hajji K et al. (2020) 7-Ketocholesterol and 7β-hydroxycholesterol: In vitro and animal models used to characterize their activities and to identify molecules preventing their toxicity. Biochem Pharmacol 173:113648 doi:10.1016/j.bcp.2019.113648 PubMed DOI

Verma H, Singh Bahia M, Choudhary S et al. (2019) Drug metabolizing enzymes-associated chemo resistance and strategies to overcome it. Drug Metab Rev 51:196–223 doi:10.1080/03602532.2019.1632886 PubMed DOI

Wang CW, Huang CC, Chou PH et al. (2017) 7-ketocholesterol and 27-hydroxycholesterol decreased doxorubicin sensitivity in breast cancer cells: estrogenic activity and mTOR pathway. Oncotarget 8:66033–66050 doi:10.18632/oncotarget.19789 PubMed DOI PMC

Wang C, He HW, Fang WN (2020) Oncogenic roles of the cholesterol metabolite 25-hydroxycholesterol in bladder cancer. Oncology Letters 19, 3671–3676 doi: 10.3892/ol.2020.11475 PubMed DOI PMC

Wang SF, Chou YC, Mazumder N et al. (2013) 7-Ketocholesterol induces P-glycoprotein through PI3K/mTOR signaling in hepatoma cells. Biochem Pharmacol 86, 548–60 doi: 10.1016/j.bcp.2013.06.006 PubMed DOI PMC

Wang SS, Yao YY, Rao CH et al. (2019) 25-HC decreases the sensitivity of human gastric cancer cells to 5-fluorouracil and promotes cells invasion via the TLR2/NF-B signaling pathway. International Journal of Oncology 54, 966–980 doi: 10.3892/ijo.2019.4684 PubMed DOI PMC

Wang HB, Ramshekar A, Kunz E et al. (2021) 7-ketocholesterol induces endothelial-mesenchymal transition and promotes fibrosis: implications in neovascular age-related macular degeneration and treatment. Angiogenesis 24:583–595 doi:10.1007/s10456-021-09770-0 PubMed DOI PMC

Widschwendter M, Siegmund KD, Müller HM et al. (2004) Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen. Cancer Res 64:3807–3813 doi:10.1158/0008-5472.CAN-03-3852 PubMed DOI

Zampieri L, Bianchi P, Ruff P et al. (2002) Differential modulation by estradiol of P-glycoprotein drug resistance protein expression in cultured MCF7 and T47D breast cancer cells. Anticancer Res 22, 2253–9 PubMed

Zarrouk A, Nury T, Karym EM et al. (2017) Attenuation of 7-ketocholesterol-induced overproduction of reactive oxygen species, apoptosis, and autophagy by dimethyl fumarate on 158 N murine oligodendrocytes. Journal of Steroid Biochemistry and Molecular Biology 169:29–38 doi:10.1016/j.jsbmb.2016.02.024 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...