• This record comes from PubMed

Plasma oxysterol levels in luminal subtype breast cancer patients are associated with clinical data

. 2020 Mar ; 197 () : 105566. [epub] 20191223

Language English Country Great Britain, England Media print-electronic

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 GM118122 NIGMS NIH HHS - United States

Links

PubMed 31874216
PubMed Central PMC7015808
DOI 10.1016/j.jsbmb.2019.105566
PII: S0960-0760(19)30528-X
Knihovny.cz E-resources

Oxygenated metabolites of cholesterol (oxysterols) have been previously demonstrated to contribute to progression of various cancers and to modulate resistance to breast cancer endocrine therapy in vitro. We measured prognostic roles of circulating levels of seven major oxysterols in the progression of luminal subtype breast carcinoma. Liquid chromatography coupled with tandem mass spectrometry was used for determination of levels of non-esterified 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, 7-ketocholesterol, cholesterol-5α,6α-epoxide, cholesterol-5β,6β-epoxide, and cholestane-3β,5α,6β-triol in plasma samples collected from patients (n = 58) before surgical removal of tumors. Oxysterol levels were then associated with clinical data of patients. All oxysterols except cholesterol-5α,6α-epoxide were detected in patient plasma samples. Circulating levels of 7α-hydroxycholesterol and 27-hydroxycholesterol were significantly lower in patients with small tumors (pT1) and cholesterol-5β,6β-epoxide and cholestane-3β,5α,6β-triol were lower in patients with stage IA disease compared to larger tumors or more advanced stages. Patients with higher than median cholestane-3β,5α,6β-triol levels had significantly worse disease-free survival than patients with lower levels (p = 0.037 for all patients and p = 0.015 for subgroup treated only with tamoxifen). In conclusion, this study shows, for the first time, that circulating levels of oxysterols, especially cholestane-3β,5α,6β-triol, may have prognostic roles in patients with luminal subtype breast cancer.

See more in PubMed

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, and Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin 68:394–424. PubMed

Mutemberezi V, Guillemot-Legris O, and Muccioli GG. 2016. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res 64:152–169. PubMed

Ma L, and Nelson ER. 2019. Oxysterols and nuclear receptors. Mol. Cell. Endocrinol 484:42–51. PubMed

Holy P, Kloudova A, and Soucek P. 2018. Importance of genetic background of oxysterol signaling in cancer. Biochimie 153:109–138. PubMed

Raleigh DR, Sever N, Choksi PK, Sigg MA, Hines KM, Thompson BM, Elnatan D, Jaishankar P, Bisignano P, Garcia-Gonzalo FR, Krup AL, Eberl M, Byrne EFX, Siebold C, Wong SY, Renslo AR, Grabe M, McDonald JG, Xu L, Beachy PA, and Reiter JF. 2018. Cilia-Associated Oxysterols Activate Smoothened. Mol. Cell 72:316–327. PubMed PMC

Kloudova A, Guengerich FP, and Soucek P. 2017. The Role of Oxysterols in Human Cancer. Trends Endocrinol. Metab 28:485–496. PubMed PMC

Wang Y, and Griffiths WJ. 2018. Unravelling new pathways of sterol metabolism: lessons learned from in-born errors and cancer. Curr. Opin. Clin. Nutr. Metab. Care 21:90–96. PubMed PMC

Nelson ER 2018. The significance of cholesterol and its metabolite, 27-hydroxycholesterol in breast cancer. Mol. Cell. Endocrinol 466:73–80. PubMed PMC

Borgquist S, Giobbie-Hurder A, Ahern TP, Garber JE, Colleoni M, Lang I, Debled M, Ejlertsen B, von Moos R, Smith I, Coates AS, Goldhirsch A, Rabaglio M, Price KN, Gelber RD, Regan MM, and Thurlimann B. 2017. Cholesterol, Cholesterol-Lowering Medication Use, and Breast Cancer Outcome in the BIG 1-98 Study. J. Clin. Oncol 35:1179–1188. PubMed

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, and McDonnell DP. 2013. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science 342:1094–1098. PubMed PMC

Baek AE, Yu YA, He S, Wardell SE, Chang CY, Kwon S, Pillai RV, McDowell HB, Thompson JW, Dubois LG, Sullivan PM, Kemper JK, Gunn MD, McDonnell DP, and Nelson ER. 2017. The cholesterol metabolite 27-hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat. Commun 8:864. PubMed PMC

Levy D, Correa de Melo T, Ohira BY, Fidelis ML, Ruiz JLM, Rodrigues A, and Bydlowski SP. 2018. Oxysterols selectively promote short-term apoptosis in tumor cell lines. Biochem. Biophys. Res. Commun 505:1043–1049. PubMed

Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, Chatelut E, Marquet P, Samadi M, Roche H, Poirot M, and Silvente-Poirot S. 2017. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. J. Steroid. Biochem. Mol. Biol 169:210–218. PubMed

Soucek P, Vrana D, Ueng YF, Wei S, Kozevnikovova R, and Guengerich FP. 2018. Selective changes in cholesterol metabolite levels in plasma of breast cancer patients after tumor removal. Clin. Chem. Lab. Med 56:e78–e81. PubMed PMC

Tavassoli F,A and Devilee P, editors. 2003. Pathology & genetics: Tumours of the breast and female genital organs, Vol. 4 IARC.

Helmschrodt C, Becker S, Schroter J, Hecht M, Aust G, Thiery J, and Ceglarek U. 2013. Fast LC-MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin. Chim. Acta 425:3–8. PubMed

Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, and Guengerich FP. 2011. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J. Biol. Chem 286:33021–33028. PubMed PMC

Solheim S, Hutchinson SA, Lundanes E, Wilson SR, Thome JL, and Roberg-Larsen H. 2019. Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. J. Steroid. Biochem. Mol. Biol 192:105309. PubMed

Poirot M, and Silvente-Poirot S. 2013. Cholesterol-5,6-epoxides: chemistry, biochemistry, metabolic fate and cancer. Biochimie 95:622–631. PubMed

Lin CY, Huo C, Kuo LK, Hiipakka RA, Jones RB, Lin HP, Hung Y, Su LC, Tseng JC, Kuo YY, Wang YL, Fukui Y, Kao YH, Kokontis JM, Yeh CC, Chen L, Yang SD, Fu HH, Chen YW, Tsai KK, Chang JY, and Chuu CP. 2013. Cholestane-3β, 5α, 6β-triol suppresses proliferation, migration, and invasion of human prostate cancer cells. PLoS One 8:e65734. PubMed PMC

Voisin M, de Medina P, Mallinger A, Dalenc F, Huc-Claustre E, Leignadier J, Serhan N, Soules R, Segala G, Mougel A, Noguer E, Mhamdi L, Bacquie E, Iuliano L, Zerbinati C, Lacroix-Triki M, Chaltiel L, Filleron T, Cavailles V, Al Saati T, Rochaix P, Duprez-Paumier R, Franchet C, Ligat L, Lopez F, Record M, Poirot M, and Silvente-Poirot S. 2017. Identification of a tumor-promoter cholesterol metabolite in human breast cancers acting through the glucocorticoid receptor. Proc. Natl. Acad. Sci. U. S. A 114:E9346–E9355. PubMed PMC

Umetani M, Domoto H, Gormley AK, Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, and Mangelsdorf DJ. 2007. 27-Hydroxycholesterol is an endogenous SERM that inhibits the cardiovascular effects of estrogen. Nat. Med 13:1185–1192. PubMed

Kimbung S, Chang CY, Bendahl PO, Dubois L, Thompson JW, McDonnell DP, and Borgquist S. 2017. Impact of 27-hydroxylase (CYP27A1) and 27-hydroxycholesterol in breast cancer. Endocr. Relat. Cancer 24:339–349. PubMed

Going CC, Alexandrova L, Lau K, Yeh CY, Feldman D, and Pitteri SJ. 2018. Vitamin D supplementation decreases serum 27-hydroxycholesterol in a pilot breast cancer trial. Breast Cancer Res. Treat 167:797–802. PubMed PMC

Tremblay-Franco M, Zerbinati C, Pacelli A, Palmaccio G, Lubrano C, Ducheix S, Guillou H, and Iuliano L. 2015. Effect of obesity and metabolic syndrome on plasma oxysterols and fatty acids in human. Steroids 99:287–292. PubMed

Soules R, Noguer E, Iuliano L, Zerbinati C, Leignadier J, Rives A, de Medina P, Silvente-Poirot S, and Poirot M. 2017. Improvement of 5,6α-epoxycholesterol, 5,6β-epoxycholesterol, cholestane-3β,5α,6β-triol and 6-oxo-cholestan-3β,5α-diol recovery for quantification by GC/MS. Chem. Phys. Lipids 207:92–98. PubMed

Poirot M, Soules R, Mallinger A, Dalenc F, and Silvente-Poirot S. 2018. Chemistry, biochemistry, metabolic fate and mechanism of action of 6-oxo-cholestan-3β,5α-diol (OCDO), a tumor promoter and cholesterol metabolite. Biochimie 153:139–149. PubMed

Lutjohann D, Bjorkhem I, Friedrichs S, Kerksiek A, Geilenkeuser WJ, Lovgren-Sandblom A, Ansorena D, Astiasaran I, Baila-Rueda L, Barriuso B, Bretillon L, Browne RW, Caccia C, Cenarro A, Crick PJ, Fauler G, Garcia-Llatas G, Griffiths WJ, Iuliano L, Lagarda MJ, Leoni V, Lottenberg AM, Matysik S, McDonald J, Rideout TC, Schmitz G, Nunes VS, Wang Y, Zerbinati C, Diczfalusy U, and Schott HF. 2018. International descriptive and interventional survey for oxycholesterol determination by gas- and liquid-chromatographic methods. Biochimie 153:26–32. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...