Selective changes in cholesterol metabolite levels in plasma of breast cancer patients after tumor removal

. 2018 Feb 23 ; 56 (3) : e78-e81.

Jazyk angličtina Země Německo Médium print

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28915107

Grantová podpora
R01 GM118122 NIGMS NIH HHS - United States

INTRODUCTION: Oxygenated metabolites of cholesterol (“oxysterols”) can influence carcinogenesis and contribute to resistance to endocrine therapy, an effect mostly described in vitro. OBJECTIVES: We sought to establish a method for screening plasma levels of oxysterols in breast cancer patients, estimate their individual variability and detection limits, and provide basic information about their roles in tumor biology. METHOD: Liquid-chromatography coupled with tandem mass spectrometry was used for determination of levels of 25-hydroxycholesterol, 27-hydroxycholesterol, 7α-hydroxycholesterol, and 7-ketocholesterol in plasma sample pairs from patients before and 12–24 months after surgical removal of tumors (n=24). Deuterated standards of all oxysterols were used for method validation. RESULT: All oxysterols were successfully detected in patient plasma samples. A significant increase in the level of 7-ketocholesterol was observed in the samples following tumor removal and the start of therapy compared to the sampling before (p=0.002). This increase was unrelated to personal characteristics of patients, expression of estrogen receptor, or to adjuvant therapy type. CONCLUSION: This study shows, for the first time, that circulating levels of oxysterols, especially 7-ketocholesterol, may reflect the presence of tumor cells in patients.

Zobrazit více v PubMed

Aye IL, Waddell BJ, Mark PJ, Keelan JA. Oxysterols inhibit differentiation and fusion of term primary trophoblasts by activating liver X receptors. Placenta. 2011;32:183–191. PubMed

Boenzi S, Deodato F, Taurisano R, Goffredo BM, Rizzo C, Dionisi-Vici C. Evaluation of plasma cholestane-3β,5α,6β-triol and 7-ketocholesterol in inherited disorders related to cholesterol metabolism. J Lipid Res. 2016;57:361–367. PubMed PMC

Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B, Marchan R, Schmidt M, Rahnenführer J, Oster H, Hengstler JG. Loss of circadian clock gene expression is associated with tumor progression in breast cancer. Cell Cycle. 2014;13:3282–3291. PubMed PMC

Dalenc F, Iuliano L, Filleron T, Zerbinati C, Voisin M, Arellano C, Chatelut E, Marquet P, Samadi M, Roché H, Poirot M, Silvente-Poirot S. Circulating oxysterol metabolites as potential new surrogate markers in patients with hormone receptor-positive breast cancer: Results of the OXYTAM study. J Steroid Biochem Mol Biol. 2016 doi: 10.1016/j.jsbmb.2016.06.010. PubMed DOI

De Medina P, Payré B, Boubekeur N, Bertrand-Michel J, Tercé F, Silvente-Poirot S, Poirot M. Ligands of the antiestrogen-binding site induce active cell death and autophagy in human breast cancer cells through the modulation of cholesterol metabolism. Cell Death Differ. 2009;16:1372–1384. PubMed

de Weille J, Fabre C, Bakalara N. Oxysterols in cancer cell proliferation and death. Biochem Pharmacol. 2013;86:154–160. PubMed

DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP. 27-Hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22:65–77. PubMed PMC

Griffiths WJ, Abdel-Khalik J, Hearn T, Yutuc E, Morgan AH, Wang Y. Current trends in oxysterol research. Biochem Soc Trans. 2016;44:652–658. PubMed PMC

Helmschrodt C, Becker S, Schröter J, Hecht M, Aust G, Thiery J, Ceglarek U. Fast LC-MS/MS analysis of free oxysterols derived from reactive oxygen species in human plasma and carotid plaque. Clin. Chim. Acta. 2013;425:3–8. PubMed

Janowski BA, Grogan MJ, Jones SA, Wisely GB, Kliewer SA, Corey EJ, Mangelsdorf DJ. Structural requirements of ligands for the oxysterol liver X receptors LXRalpha and LXRbeta. Proc. Natl. Acad. Sci. U. S. A. 1999;96:266–271. PubMed PMC

Kloudova A, Guengerich FP, Soucek P. The role of oxysterols in human cancer. Trends Endocrinol. Metab. 2017 doi: 10.1016/j.tem.2017.03.002. pii: S1043-2760(17)30038-3. PubMed DOI PMC

Kuzu OF, Noory MA, Robertson GP. The role of cholesterol in cancer. Cancer Res. 2016;76:2063–2070. PubMed PMC

Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog. Lipid Res. 2016;64:152–169. PubMed

Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, Carver NJ, Pillai RV, Sullivan PM, Sondhi V, Umetani M, Geradts J, McDonnell DP. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342:1094–1098. PubMed PMC

Odawara H, Iwasaki T, Horiguchi J, Rokutanda N, Hirooka K, Miyazaki W, Koibuchi Y, Shimokawa N, Iino Y, Takeyoshi I, Koibuchi N. Activation of aromatase expression by retinoic acid receptor-related orphan receptor (ROR) α in breast cancer cells, identification of a novel ROR response element. J. Biol. Chem. 2009;284:17711–17719. PubMed PMC

Poirot M, Silvente-Poirot S, Weichselbaum RR. Cholesterol metabolism and resistance to tamoxifen. Curr. Opin. Pharmacol. 2012;12:683–689. PubMed

Rosa Fernandes L, Stern AC, Cavaglieri RC, Nogueira FC, Domont G, Palmisano G, Bydlowski SP. 7-Ketocholesterol overcomes drug resistance in chronic myeloid leukemia cell lines beyond MDR1 mechanism. J. Proteomics. 2017;151:12–23. PubMed

Segala G, de Medina P, Iuliano L, Zerbinati C, Paillasse MR, Noguer E, Dalenc F, Payré B, Jordan VC, Record M, Silvente-Poirot S, Poirot M. 5,6-Epoxycholesterols contribute to the anticancer pharmacology of tamoxifen in breast cancer cells. Biochem. Pharmacol. 2013;86:175–189. PubMed

Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J. Biol. Chem. 2011;286:33021–33028. PubMed PMC

Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J. Clin. 2016;66:7–30. PubMed

Silvente-Poirot S, Poirot M, Cancer Cholesterol and cancer: in the balance. Science. 2014;343:1445–1446. PubMed

Simigdala N, Gao Q, Pancholi S, Roberg-Larsen H, Zvelebil M, Ribas R, Folkerd E, Thompson A, Bhamra A, Dowsett M, Martin LA. Cholesterol biosynthesis pathway as a novel mechanism of resistance to estrogen deprivation in estrogen receptor-positive breast cancer. Breast Cancer Res. 2016;18:58. PubMed PMC

Tavassoli FA, Devilee P, editors. Pathology and Genetics: Tumours of the Breast and Female Genital Organs. Vol. 4. IARC; Lyon: 2003.

Wang DY, Fulthorpe R, Liss SN, Edwards EA. Identification of estrogen-responsive genes by complementary deoxyribonucleic acid microarray and characterization of a novel early estrogen-induced gene, EEIG1. Mol. Endocrinol. 2004;18:402–411. PubMed

Wang Y, Kumar N, Solt LA, Richardson TI, Helvering LM, Crumbley C, Garcia-Ordonez RD, Stayrook KR, Zhang X, Novick S, Chalmers MJ, Griffin PR, Burris TP. Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. J. Biol. Chem. 2010;285:5013–5025. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...