Dosimetric comparison of MRI-based HDR brachytherapy and stereotactic radiotherapy in patients with advanced cervical cancer: A virtual brachytherapy study
Status PubMed-not-MEDLINE Jazyk angličtina Země Polsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
25337413
PubMed Central
PMC4201773
DOI
10.1016/j.rpor.2014.04.005
PII: S1507-1367(14)00058-3
Knihovny.cz E-zdroje
- Klíčová slova
- Brachytherapy, Cervix carcinoma, CyberKnife, Dosimetric study, Stereotactic radiotherapy,
- Publikační typ
- časopisecké články MeSH
AIM: To evaluate the treatment plans of 3D image-guided brachytherapy (BT) and stereotactic robotic radiotherapy with online image guidance - CyberKnife (CK) in patients with locally advanced cervix cancer. METHODS AND MATERIALS: Ten pairs of plans for patients with locally advanced inoperable cervical cancer were created using MR based 3D brachytherapy and stereotaxis CK. The dose that covers 98% of the target volume (HR CTV D98) was taken as a reference and other parameters were compared. RESULTS: Of the ten studied cases, the dose from D100 GTV was comparable for both devices, on average, the BT GTV D90 was 10-20% higher than for CK. The HR CTV D90 was higher for CK with an average difference of 10-20%, but only fifteen percent of HR CTV (the peripheral part) received a higher dose from CK, while 85% of the target volume received higher doses from BT. We found a significant organ-sparing effect of CK compared to brachytherapy (20-30% lower doses in 0.1 cm(3), 1 cm(3), and 2 cm(3)). CONCLUSION: BT remains to be the best method for dose escalation. Due to the significant organ-sparing effect of CK, patients that are not candidates for BT could benefit from stereotaxis more than from classical external beam radiotherapy.
Department of Gynecology University Hospital Ostrava Ostrava Czech Republic
Department of Oncology University Hospital Ostrava Ostrava Czech Republic
Oncology Centre Multiscan and Pardubice Regional Hospital Pardubice Czech Republic
Zobrazit více v PubMed
Viswanathan A.N., Thomadsen B. American Brachytherapy Society Cervical Cancer Recommendations Committee American Brachytherapy Society consensus guidelines for locally advanced carcinoma of the cervix. Part I: general principles. Brachytherapy. 2012;11(1):33–46. PubMed
Marnitz S., Stromberger C., Kawgan-Kagan M. Helical tomotherapy in cervical cancer patients: simultaneous integrated boost concept: technique and acute toxicity. Strahlenther Onkol. 2010;186:572–579. PubMed
Paton A.M., Chalmers K.E., Coomber H., Cameron A.L. Dose escalation in brachytherapy for cervical cancer: impact on (or increased need for) MRI-guided plan optimisation. Br J Radiol. 2012;85:1249–1255. PubMed PMC
Pötter R., Haie-Meder C., Van Limbergen E. Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol. 2006;78(1):67–77. PubMed
Toossi M.T.B., Ghorbani M., Makhdoumi Y. A retrospective analysis of rectal and bladder dose for gynecological brachytherapy treatments with GZP6 HDR afterloading system. Rep Pract Oncol Radiother. 2012;17(6):352–357. PubMed PMC
Guedea F. Recent developments in brachytherapy. Rep Pract Oncol Radiother. 2011;16(6):203–206. PubMed PMC
Dimopoulos J., Lang S., Kirisits C. Dose-volume histogram parameters and local tumor control in magnetic resonance image-guided cervical cancer brachytherapy. Int J Radiat Oncol Biol Phys. 2009;75:56–63. PubMed
Guckenberger M., Bachmann J., Wulf J. Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol. 2010;94(January (1)):53–59. PubMed
Krempien R.C., Daueber S., Hensley F.W. Image fusion of CT and MRI data enables improved target volume definition in 3D-brachytherapy treatment planning. Brachytherapy. 2003;2(3):164–171. PubMed
Dieterich S., Gibbs I.C. The CyberKnife in clinical use: current roles, future expectations. Front Radiat Ther Oncol. 2011;43:181–194. PubMed
Antypas C., Pantelis E. Performance evaluation of a CyberKnife G4 image-guided robotic stereotactic radiosurgery system. Phys Med Biol. 2008;53(17):4697–4718. PubMed
Dolezel M., Odrazka K., Vanasek J. MRI-based pre-planning in patients with cervical cancer treated with three-dimensional brachytherapy. Br J Radiol. 2011;84(1005):850–856. PubMed PMC
Cengiz M., Dogan A., Ozyigit G. Comparison of intracavitary brachytherapy and stereotactic body radiotherapy dose distribution for cervical cancer. Brachytherapy. 2012;11(2):125–129. PubMed
Georg D., Kirisits C., Hillbrand M. Image-guided radiotherapy for cervix cancer: high-tech external beam therapy versus high-tech brachytherapy. Int J Radiat Oncol Biol Phys. 2008;71(4):1272–1278. PubMed
Lee J.E., Han Y., Huh S.J. Interfractional variation of uterine position during radical RT: weekly CT evaluation. Gynecol Oncol. 2007;104(1):145–151. PubMed
Buchali A., Koswig S., Dinges S. Impact of the filling status of the bladder and rectum on their integral dose distribution and the movement of the uterus in the treatment planning of gynaecological cancer. Radiother Oncol. 1999;52(1):29–34. PubMed
Kaatee R.S., Olofsen M.J., Verstraate M.B. Detection of organ movement in cervix cancer patients using a fluoroscopic electronic portal imaging device and radiopaque markers. Int J Radiat Oncol Biol Phys. 2002;54(2):576–583. PubMed
Fuller D.B., Lee C., Hardy S. Virtual HDRsm CyberKnife prostate treatment: toward the development of non-invasive HDR dosimetry delivery and early clinical observations. Int J Radiat Oncol Biol Phys. 2008;70(5):588–1597. PubMed
Tanderup K., Nesvacil N., Pötter R., Kirisits C. Uncertainties in image guided adaptive cervix cancer brachytherapy: impact on planning and prescription. Radiother Oncol. 2013;107/1(1–5) 0167-8140. PubMed
Landoni F., Maneo A., Colombo A. Randomised study of radical surgery versus radiotherapy for stage Ib–IIa cervical cancer. Lancet. 1997;350:535–540. PubMed