Phylogenentic and enzymatic characterization of psychrophilic and psychrotolerant marine bacteria belong to γ-Proteobacteria group isolated from the sub-Antarctic Beagle Channel, Argentina

. 2015 May ; 60 (3) : 183-98. [epub] 20141026

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid25344742

The phylogenetic and physiological characteristics of cultivable-dependent approaches were determined to establish the diversity of marine bacteria associated with the intestines of benthonic organisms and seawater samples from the Argentina's Beagle Channel. A total of 737 isolates were classified as psychrophlic and psychrotolerant culturable marine bacteria. These cold-adapted microorganisms are capable of producing cold-active glycosyl hydrolases, such as β-glucosidases, celulases, β-galactosidases, xylanases, chitinases, and proteases. These enzymes could have potential biotechnological applications for use in low-temperature manufacturing processes. According to polymerase chain reaction-restriction fragment length polymorphism analysis of part of genes encoding 16S ribosomal DNA (ARDRA) and DNA gyrase subunit B (gyrB-RFLP), 11 operational taxonomic units (OTU) were identified and clustered in known genera using InfoStat software. The 50 isolates selected were sequenced based on near full sequence analysis of 16S rDNA and gyrB sequences and identified by their nearest neighbors ranging between 96 and 99 % of identities. Phylogenetic analyses using both genes allowed relationships between members of the cultured marine bacteria belonging to the γ-Proteobacteria group (Aeromonas, Halteromonas, Pseudomonas, Pseudoalteromonas, Shewanella, Serratia, Colwellia, Glacielocola, and Psychrobacter) to be evaluated. Our research reveals a high diversity of hydrolytic bacteria, and their products actuality has an industrial use in several bioprocesses at low-temperature manufacturing.

Zobrazit více v PubMed

Rev Argent Microbiol. 2008 Jan-Mar;40(1):63-71 PubMed

Appl Environ Microbiol. 2002 Jul;68(7):3628-33 PubMed

Extremophiles. 2010 Sep;14(5):465-74 PubMed

J Ind Microbiol Biotechnol. 2011 Jul;38(7):769-90 PubMed

Syst Appl Microbiol. 2008 Sep;31(4):302-11 PubMed

Mol Biol Evol. 2011 Oct;28(10):2731-9 PubMed

Trends Biotechnol. 2010 Mar;28(3):111-6 PubMed

Curr Opin Biotechnol. 2002 Jun;13(3):253-61 PubMed

Curr Opin Biotechnol. 2010 Jun;21(3):353-7 PubMed

Appl Environ Microbiol. 2005 Nov;71(11):6689-97 PubMed

J Bacteriol. 1991 Jul;173(14):4371-8 PubMed

J Basic Microbiol. 2008 Feb;48(1):16-24 PubMed

Nature. 2000 May 18;405(6784):299-304 PubMed

Extremophiles. 2007 May;11(3):517-26 PubMed

Microb Ecol. 2002 Apr;43(3):315-28 PubMed

J Bacteriol. 1991 Jan;173(2):697-703 PubMed

Folia Microbiol (Praha). 2011 May;56(3):209-14 PubMed

Microb Cell Fact. 2008 Aug 21;7:27 PubMed

Extremophiles. 2010 Jul;14(4):339-48 PubMed

Microbiology (Reading). 2000 Oct;146 ( Pt 10):2385-2394 PubMed

Extremophiles. 2009 Jan;13(1):111-20 PubMed

Extremophiles. 2010 Sep;14(5):475-81 PubMed

Curr Opin Microbiol. 2005 Dec;8(6):649-55 PubMed

Mar Drugs. 2011;9(4):478-99 PubMed

Evolution. 1985 Jul;39(4):783-791 PubMed

Nucleic Acids Res. 1994 Nov 11;22(22):4673-80 PubMed

J Basic Microbiol. 2011 Dec;51(6):590-600 PubMed

Nat Rev Microbiol. 2005 Sep;3(9):711-21 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...